1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLBFGS2Optimizerv4_h
#define itkLBFGS2Optimizerv4_h
#include "itkObjectToObjectOptimizerBase.h"
#include "ITKOptimizersv4Export.h"
#include "itkAutoPointer.h"
namespace itk
{
/** \class LBFGS2Optimizerv4
* \brief Wrap of the libLBFGS[1] algorithm for use in ITKv4 registration framework.
* LibLBFGS is a translation of LBFGS code by Nocedal [2] and adds the orthantwise
* limited-memmory Quais-Newton method [3] for optimization with L1-norm on the
* parameters.
*
* LBFGS is a quasi-Newton method uses an approximate estimate of the inverse Hessian
* \f$ (\nabla^2 f(x) )^-1 \f$ to scale the gradient step:
* \f[
* x_{n+1} = x_n - s (\nabla^2 f(x_n) )^-1 \nabla f(x)
* \f]
* with \f$ s \f$ the step size.
*
* The inverse Hessian is approximated from the gradients of previous iteration and
* thus only the gradient of the objective function is required.
*
* The step size \f$ s \f$ is determined through line search which defaults to
* the approach by More and Thuente [4]. This line search approach finds a step
* size such that
* \f[
* \lVert \nabla f(x + s (\nabla^2 f(x_n) )^{-1} \nabla f(x) ) \rVert
* \le
* \nu \lVert \nabla f(x) \rVert
* \f]
* The parameter \f$\nu\f$ is set through SetLineSearchAccuracy() (default 0.9)
* and SetGradientLineSearchAccuracy()
*
* Instead of the More-Tunete method, backtracking with three different
* conditions [7] are availabe and can be set through SetLineSearch():
* - LINESEARCH_BACKTRACKING_ARMIJO
* - LINESEARCH_BACKTRACKING_WOLFE
* - LINESEARCH_BACKTRACKING_STRONG_WOLFE
*
* The optimization stops when either the gradient satisfies the condition
* \f[
* \lVert \nabla f(x) \rVert \le \epsilon \max(1, \lVert X \rVert)
* \f]
* or a maximum number of function evaluations has been reached.
* The tolerance \f$\epsilon\f$ is set through SetSolutionAccuracy()
* (default 1e-5) and the maximum number of function evaluations is set
* through SetMaximumIterations() (default 0 = no maximum).
*
*
* References:
*
* [1] [libLBFGS](http://www.chokkan.org/software/liblbfgs/)
*
* [2] [NETLIB lbfgs](http://users.iems.northwestern.edu/~nocedal/lbfgs.html)
*
* [3] Galen Andrew and Jianfeng Gao.
* Scalable training of L1-regularized log-linear models.
* 24th International Conference on Machine Learning, pp. 33-40, 2007.
*
* [4] Jorge Nocedal.
* Updating Quasi-Newton Matrices with Limited Storage.
* Mathematics of Computation, Vol. 35, No. 151, pp. 773–782, 1980.
*
* [5] Dong C. Liu and Jorge Nocedal.
* On the limited memory BFGS method for large scale optimization.
* Mathematical Programming B, Vol. 45, No. 3, pp. 503-528, 1989.
*
* [6] More, J. J. and D. J. Thuente.
* Line Search Algorithms with Guaranteed Sufficient Decrease.
* ACM Transactions on Mathematical Software 20, no. 3 (1994): 286–307.
*
* [7] John E. Dennis and Robert B. Schnabel.
* Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
* Englewood Cliffs, 1983.
*
* \ingroup ITKOptimizersv4
*/
class ITKOptimizersv4_EXPORT LBFGS2Optimizerv4:
public ObjectToObjectOptimizerBaseTemplate<double>{
public:
enum LineSearchMethod{
/** The default algorithm (MoreThuente method). */
LINESEARCH_DEFAULT = 0,
/** MoreThuente method proposd by More and Thuente. */
LINESEARCH_MORETHUENTE = 0,
/**
* Backtracking method with the Armijo condition.
* The backtracking method finds the step length such that it satisfies
* the sufficient decrease (Armijo) condition,
* - f(x + a * d) <= f(x) + lbfgs_parameter_t::ftol * a * g(x)^T d,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LINESEARCH_BACKTRACKING_ARMIJO = 1,
/** The backtracking method with the defualt (regular Wolfe) condition. */
LINESEARCH_BACKTRACKING = 2,
/**
* Backtracking method with regular Wolfe condition.
* The backtracking method finds the step length such that it satisfies
* both the Armijo condition (LINESEARCH_BACKTRACKING_ARMIJO)
* and the curvature condition,
* - g(x + a * d)^T d >= lbfgs_parameter_t::wolfe * g(x)^T d,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LINESEARCH_BACKTRACKING_WOLFE = 2,
/**
* Backtracking method with strong Wolfe condition.
* The backtracking method finds the step length such that it satisfies
* both the Armijo condition (LINESEARCH_BACKTRACKING_ARMIJO)
* and the following condition,
* - |g(x + a * d)^T d| <= lbfgs_parameter_t::wolfe * |g(x)^T d|,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3,
};
/**
* currently only double is used in lbfgs need to figure
* out how to make it a template parameter and set the required
* define so lbfgs.h uses the corrcet version
**/
typedef double PrecisionType;
/** Standard "Self" typedef. */
typedef LBFGS2Optimizerv4 Self;
typedef ObjectToObjectOptimizerBaseTemplate<double> Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
typedef Superclass::MetricType MetricType;
typedef Superclass::ParametersType ParametersType;
typedef Superclass::ScalesType ScalesType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(LBFGS2Optimizerv4, Superclass);
/** Start optimization with an initial value. */
virtual void StartOptimization(bool doOnlyInitialization = false) ITK_OVERRIDE;
virtual const StopConditionReturnStringType GetStopConditionDescription() const ITK_OVERRIDE;
/** This optimizer does not support scaling of the derivatives. */
virtual void SetScales(const ScalesType &) ITK_OVERRIDE;
/** This optimizer does not support weighting of the derivatives. */
virtual void SetWeights(const ScalesType ) ITK_OVERRIDE;
/**
* Set/Get the number of corrections to approximate the inverse hessian matrix.
* The L-BFGS routine stores the computation results of previous \c m
* iterations to approximate the inverse hessian matrix of the current
* iteration. This parameter controls the size of the limited memories
* (corrections). The default value is \c 6. Values less than \c 3 are
* not recommended. Large values will result in excessive computing time.
*/
void SetHessianApproximationAccuracy(int m);
int GetHessianApproximationAccuracy() const;
/**
* Set/Get epsilon for convergence test.
* This parameter determines the accuracy with which the solution is to
* be found. A minimization terminates when
* \f$||g|| < \epsilon * max(1, ||x||)\f$,
* where ||.|| denotes the Euclidean (L2) norm. The default value is
* \c 1e-5.
*/
void SetSolutionAccuracy(PrecisionType epsilon);
PrecisionType GetSolutionAccuracy() const;
/**
* Set/Ger distance for delta-based convergence test.
* This parameter determines the distance, in iterations, to compute
* the rate of decrease of the objective function. If the value of this
* parameter is zero, the library does not perform the delta-based
* convergence test. The default value is \c 0.
*/
void SetDeltaConvergenceDistance(int nPast);
int GetDeltaConvergenceDistance() const;
/**
* Delta for convergence test.
* This parameter determines the minimum rate of decrease of the
* objective function. The library stops iterations when the
* following condition is met:
* \f$(f' - f) / f < \delta\f$,
* where f' is the objective value of past iterations ago, and f is
* the objective value of the current iteration.
* The default value is \c 0.
*/
void SetDeltaConvergenceTolerance(PrecisionType tol);
PrecisionType GetDeltaConvergenceTolerance() const;
/**
* The maximum number of iterations.
* The lbfgs() function terminates an optimization process with
* \c LBFGSERR_MAXIMUMITERATION status code when the iteration count
* exceedes this parameter. Setting this parameter to zero continues an
* optimization process until a convergence or error. The default value
* is \c 0.
*/
void SetMaximumIterations(int maxIterations);
int GetMaximumIterations() const;
/** Aliased to Set/Get MaximumIterations to match base class interface.
*/
virtual SizeValueType GetNumberOfIterations() const ITK_OVERRIDE { return GetMaximumIterations(); }
virtual void SetNumberOfIterations( const SizeValueType _arg ) ITK_OVERRIDE { SetMaximumIterations(static_cast<int>(_arg)); }
/**
* The line search algorithm.
* This parameter specifies a line search algorithm to be used by the
* L-BFGS routine. See lbfgs.h for enumeration of line search type.
* Defaults to More-Thuente's method.
*/
void SetLineSearch(const LineSearchMethod &linesearch);
LineSearchMethod GetLineSearch() const;
/**
* The maximum number of trials for the line search.
* This parameter controls the number of function and gradients evaluations
* per iteration for the line search routine. The default value is \c 20.
*/
void SetMaximumLineSearchEvaluations(int n);
int GetMaximumLineSearchEvaluations() const;
/**
* The minimum step of the line search routine.
* The default value is \c 1e-20. This value need not be modified unless
* the exponents are too large for the machine being used, or unless the
* problem is extremely badly scaled (in which case the exponents should
* be increased).
*/
void SetMinimumLineSearchStep(PrecisionType step);
PrecisionType GetMinimumLineSearchStep() const;
/**
* The maximum step of the line search.
* The default value is \c 1e+20. This value need not be modified unless
* the exponents are too large for the machine being used, or unless the
* problem is extremely badly scaled (in which case the exponents should
* be increased).
*/
void SetMaximumLineSearchStep(PrecisionType step);
PrecisionType GetMaximumLineSearchStep() const;
/**
* A parameter to control the accuracy of the line search routine.
* The default value is \c 1e-4. This parameter should be greater
* than zero and smaller than \c 0.5.
*/
void SetLineSearchAccuracy( PrecisionType ftol );
PrecisionType GetLineSearchAccuracy() const;
/**
* A coefficient for the Wolfe condition.
* This parameter is valid only when the backtracking line-search
* algorithm is used with the Wolfe condition,
* LINESEARCH_BACKTRACKING_STRONG_WOLFE or
* LINESEARCH_BACKTRACKING_WOLFE .
* The default value is \c 0.9. This parameter should be greater
* than the \c ftol parameter and smaller than \c 1.0.
*/
void SetWolfeCoefficient( PrecisionType wc );
PrecisionType GetWolfeCoefficient() const;
/**
* A parameter to control the gradient accuracy of the More-Thuente
* line search routine.
* The default value is \c 0.9. If the function and gradient
* evaluations are inexpensive with respect to the cost of the
* iteration (which is sometimes the case when solving very large
* problems) it may be advantageous to set this parameter to a small
* value. A typical small value is \c 0.1. This parameter shuold be
* greater than the \c ftol parameter (\c 1e-4) and smaller than
* \c 1.0.
*/
void SetLineSearchGradientAccuracy( PrecisionType gtol );
PrecisionType GetLineSearchGradientAccuracy() const;
/**
* The machine precision for floating-point values.
* This parameter must be a positive value set by a client program to
* estimate the machine precision. The line search routine will terminate
* with the status code (\c LBFGSERR_ROUNDING_ERROR) if the relative width
* of the interval of uncertainty is less than this parameter.
*/
void SetMachinePrecisionTolerance(PrecisionType xtol);
PrecisionType GetMachinePrecisionTolerance() const;
/**
* Coeefficient for the L1 norm of variables.
* This parameter should be set to zero for standard minimization
* problems. Setting this parameter to a positive value activates
* Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which
* minimizes the objective function F(x) combined with the L1 norm |x|
* of the variables, \f$F(x) + C |x|}. \f$. This parameter is the coefficient
* for the |x|, i.e., C. As the L1 norm |x| is not differentiable at
* zero, the library modifies function and gradient evaluations from
* a client program suitably; a client program thus have only to return
* the function value F(x) and gradients G(x) as usual. The default value
* is zero.
*/
void SetOrthantwiseCoefficient( PrecisionType orthant_c);
PrecisionType GetOrthantwiseCoefficient() const;
/**
* Start index for computing L1 norm of the variables.
* This parameter is valid only for OWL-QN method
* (i.e., \f$ orthantwise_c != 0 \f$). This parameter b (0 <= b < N)
* specifies the index number from which the library computes the
* L1 norm of the variables x,
* \f[
* |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| .
* \f]
* In other words, variables \f$x_1, ..., x_{b-1}\f$ are not used for
* computing the L1 norm. Setting \c b, (0 < b < N), one can protect
* variables, \f$x_1, ..., x_{b-1}\f$ (e.g., a bias term of logistic
* regression) from being regularized. The default value is zero.
*/
void SetOrthantwiseStart(int start);
int GetOrthantwiseStart() const;
/**
* End index for computing L1 norm of the variables.
* This parameter is valid only for OWL-QN method
* (i.e., \f$ orthantwise_c != 0 \f$). This parameter \c e, (0 < e <= N)
* specifies the index number at which the library stops computing the
* L1 norm of the variables x,
*/
void SetOrthantwiseEnd(int end);
int GetOrthantwiseEnd() const;
/** Get paramater norm of current iteration */
itkGetConstMacro(CurrentParameterNorm, PrecisionType);
/** Get gradient norm of current iteration */
itkGetConstMacro(CurrentGradientNorm, PrecisionType);
//itkGetConstMacro(CurrentParameter, double* );
//itkGetConstMacro(CurrentGradient, double* );
/** Get stepsize of current iteration */
itkGetConstMacro(CurrentStepSize, PrecisionType);
/** Get number of evaluations for current iteration */
itkGetConstMacro(CurrentNumberOfEvaluations, PrecisionType);
protected:
LBFGS2Optimizerv4();
virtual ~LBFGS2Optimizerv4() ITK_OVERRIDE;
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** Progress callback from libLBFGS forwards it to the specific instance */
static int UpdateProgressCallback( void *Instance,
const PrecisionType *x,
const PrecisionType *g,
const PrecisionType fx,
const PrecisionType xnorm,
const PrecisionType gnorm,
const PrecisionType step,
int n,
int k,
int ls
);
/** Update the progress as reported from libLBFSG and notify itkObject */
int UpdateProgress( const PrecisionType *x,
const PrecisionType *g,
const PrecisionType fx,
const PrecisionType xnorm,
const PrecisionType gnorm,
const PrecisionType step,
int n,
int k,
int ls
);
//** Function evluation callback from libLBFGS frowrad to instance */
static PrecisionType EvaluateCostCallback( void *instance,
const PrecisionType *x,
PrecisionType *g,
const int n,
const PrecisionType step
);
PrecisionType EvaluateCost( const PrecisionType *x,
PrecisionType *g,
const int n,
const PrecisionType step
);
private:
ITK_DISALLOW_COPY_AND_ASSIGN(LBFGS2Optimizerv4);
// Private Implementation (Pimpl), to hide liblbfgs data structures
class PrivateImplementationHolder;
AutoPointer<PrivateImplementationHolder> m_Pimpl;
/** Progress update variables */
const double *m_CurrentGradient;
const double *m_CurrentParameter;
double m_CurrentStepSize;
double m_CurrentParameterNorm;
double m_CurrentGradientNorm;
int m_CurrentNumberOfEvaluations;
int m_StatusCode;
};
} // end namespace itk
#endif
|