File: itkAutoScaledGradientDescentRegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (342 lines) | stat: -rw-r--r-- 13,566 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkGradientDescentOptimizerv4.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkRegistrationParameterScalesFromIndexShift.h"
#include "itkRegistrationParameterScalesFromJacobian.h"

#include "itkSize.h"
#include "itkExceptionObject.h"
#include "itkImageRegistrationMethodImageSource.h"
#include "itkMath.h"

/**
 *  This is a test using GradientDescentOptimizerv4 and parameter scales
 *  estimator. The scales are estimated before the first iteration by
 *  RegistrationParameterScalesFromShift. The learning rates are estimated
 *  at each iteration according to the shift of each step.
 */

template< typename TMovingTransform >
int itkAutoScaledGradientDescentRegistrationTestTemplated(
                                            int numberOfIterations,
                                            double shiftOfStep,
                                            std::string scalesOption,
                                            bool usePhysicalSpaceForShift,
                                            bool estimateLearningRateOnce,
                                            bool estimateLearningRateAtEachIteration,
                                            bool estimateScales )
{
  const unsigned int Dimension = TMovingTransform::SpaceDimension;
  typedef double PixelType;

  // Fixed Image Type
  typedef itk::Image<PixelType,Dimension>               FixedImageType;

  // Moving Image Type
  typedef itk::Image<PixelType,Dimension>               MovingImageType;

  // Size Type
  typedef typename MovingImageType::SizeType            SizeType;

  // ImageSource
  typedef typename itk::testhelper::ImageRegistrationMethodImageSource<
                                  typename FixedImageType::PixelType,
                                  typename MovingImageType::PixelType,
                                  Dimension >         ImageSourceType;

  typename FixedImageType::ConstPointer    fixedImage;
  typename MovingImageType::ConstPointer   movingImage;
  typename ImageSourceType::Pointer        imageSource;

  imageSource   = ImageSourceType::New();

  SizeType size;
  size[0] = 100;
  size[1] = 100;

  imageSource->GenerateImages( size );

  fixedImage    = imageSource->GetFixedImage();
  movingImage   = imageSource->GetMovingImage();

  // Transform for the moving image
  typedef TMovingTransform MovingTransformType;
  typename MovingTransformType::Pointer movingTransform = MovingTransformType::New();
  movingTransform->SetIdentity();

  // Transform for the fixed image
  typedef itk::IdentityTransform<double, Dimension> FixedTransformType;
  typename FixedTransformType::Pointer fixedTransform = FixedTransformType::New();
  fixedTransform->SetIdentity();

  // ParametersType for the moving transform
  typedef typename MovingTransformType::ParametersType ParametersType;

  // Metric
  typedef itk::MeanSquaresImageToImageMetricv4
    < FixedImageType, MovingImageType, FixedImageType > MetricType;
  typename MetricType::Pointer metric = MetricType::New();

  // Assign images and transforms to the metric.
  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetVirtualDomainFromImage( const_cast<FixedImageType *>(fixedImage.GetPointer()) );

  metric->SetFixedTransform( fixedTransform );
  metric->SetMovingTransform( movingTransform );

  // Initialize the metric to prepare for use
  metric->Initialize();

  // Optimizer
  typedef itk::GradientDescentOptimizerv4  OptimizerType;
  OptimizerType::Pointer optimizer = OptimizerType::New();

  optimizer->SetMetric( metric );
  optimizer->SetNumberOfIterations( numberOfIterations );

  // Instantiate an Observer to report the progress of the Optimization
  typedef itk::CommandIterationUpdate< OptimizerType >  CommandIterationType;
  CommandIterationType::Pointer iterationCommand = CommandIterationType::New();
  iterationCommand->SetOptimizer( optimizer.GetPointer() );

  // Optimizer parameter scales estimator
  typename itk::OptimizerParameterScalesEstimator::Pointer scalesEstimator;

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > PhysicalShiftScalesEstimatorType;
  typedef itk::RegistrationParameterScalesFromIndexShift< MetricType > IndexShiftScalesEstimatorType;
  typedef itk::RegistrationParameterScalesFromJacobian< MetricType > JacobianScalesEstimatorType;

  if (scalesOption.compare("shift") == 0)
    {
    if( usePhysicalSpaceForShift )
      {
      std::cout << "Testing RegistrationParameterScalesFrom*Physical*Shift" << std::endl;
      typename PhysicalShiftScalesEstimatorType::Pointer shiftScalesEstimator = PhysicalShiftScalesEstimatorType::New();
      shiftScalesEstimator->SetMetric(metric);
      shiftScalesEstimator->SetTransformForward(true); //default
      scalesEstimator = shiftScalesEstimator;
      }
    else
      {
      std::cout << "Testing RegistrationParameterScalesFrom*Index*Shift" << std::endl;
      typename IndexShiftScalesEstimatorType::Pointer shiftScalesEstimator = IndexShiftScalesEstimatorType::New();
      shiftScalesEstimator->SetMetric(metric);
      shiftScalesEstimator->SetTransformForward(true); //default
      scalesEstimator = shiftScalesEstimator;
      }
    }
  else
    {
    std::cout << "Testing RegistrationParameterScalesFrom*Jacobian*" << std::endl;
    typename JacobianScalesEstimatorType::Pointer jacobianScalesEstimator
      = JacobianScalesEstimatorType::New();
    jacobianScalesEstimator->SetMetric(metric);
    jacobianScalesEstimator->SetTransformForward(true); //default
    scalesEstimator = jacobianScalesEstimator;
    }

  optimizer->SetScalesEstimator(scalesEstimator);
  // If SetMaximumStepSizeInPhysicalUnits is not called, it will use voxel spacing.
  optimizer->SetMaximumStepSizeInPhysicalUnits(shiftOfStep);
  optimizer->SetDoEstimateLearningRateOnce( estimateLearningRateOnce );
  optimizer->SetDoEstimateLearningRateAtEachIteration( estimateLearningRateAtEachIteration );
  optimizer->SetDoEstimateScales( estimateScales );

  // Set initial scales to bad values
  OptimizerType::ScalesType initScales( metric->GetNumberOfParameters() );
  initScales.Fill( static_cast<OptimizerType::ScalesType::ValueType>(999999) );
  optimizer->SetScales( initScales );
  std::cout << "Initial Scales: " << optimizer->GetScales() << std::endl;

  // If no learning rate estimate is performed, test with a fixed value
  // close to the result of running this test with learning rate estimation
  // for only the first step.
  const OptimizerType::InternalComputationValueType fixedLearningRate = 0.01501010101010101;
  if( ! estimateLearningRateOnce && ! estimateLearningRateAtEachIteration )
    {
    optimizer->SetLearningRate( fixedLearningRate );
    }
  std::cout << "Initial learning rate: " << optimizer->GetLearningRate() << std::endl;

  std::cout << "**Start optimization..." << std::endl
            << "Number of iterations: " << numberOfIterations << std::endl;
  std::cout << "GetDoEstimateScales: " << optimizer->GetDoEstimateScales() << std::endl;
  std::cout << "GetDoEstimateLearningRateOnce: " << optimizer->GetDoEstimateLearningRateOnce() << std::endl;
  std::cout << "GetDoEstimateLearningRateAtEachIteration: " << optimizer->GetDoEstimateLearningRateAtEachIteration() << std::endl;

  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during Optimization:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "...finished. " << std::endl
            << "StopCondition: " << optimizer->GetStopConditionDescription()
            << std::endl
            << "Metric: NumberOfValidPoints: "
            << metric->GetNumberOfValidPoints() << std::endl
            << "Final scales: " << optimizer->GetScales() << std::endl
            << "Final learning rate: " << optimizer->GetLearningRate()
            << std::endl;

  if( ! estimateLearningRateOnce && ! estimateLearningRateAtEachIteration )
    {
    if( itk::Math::NotExactlyEquals(optimizer->GetLearningRate(), fixedLearningRate) )
      {
      std::cerr << "Expected learning rate not to change." << std::endl;
      return EXIT_FAILURE;
      }
    }

  // If scale estimation was disabled, make sure the scales didn't change
  if( ! estimateScales )
    {
    OptimizerType::ScalesType postScales = optimizer->GetScales();
    for( itk::SizeValueType s=0; s < postScales.Size(); s++ )
      {
      if( itk::Math::NotExactlyEquals(initScales[s], postScales[s]) )
        {
        std::cerr << "Scales were estimated by optimizer despite not being "
                  << "enabled to do so." << std::endl;
        return EXIT_FAILURE;
        }
      }
    // Just return now since we won't get a valid result w/out scales estimation
    // for the jacobian shift case.
    return EXIT_SUCCESS;
    }

  //
  // results
  //
  ParametersType finalParameters  = movingTransform->GetParameters();
  ParametersType fixedParameters  = movingTransform->GetFixedParameters();
  std::cout << "Estimated scales = " << optimizer->GetScales() << std::endl;
  std::cout << "finalParameters = " << finalParameters << std::endl;
  std::cout << "fixedParameters = " << fixedParameters << std::endl;
  bool pass = true;

  ParametersType actualParameters = imageSource->GetActualParameters();
  std::cout << "actualParameters = " << actualParameters << std::endl;
  const unsigned int numbeOfParameters = actualParameters.Size();

  // We know that for the Affine transform the Translation parameters are at
  // the end of the list of parameters.
  const unsigned int offsetOrder = finalParameters.Size()-actualParameters.Size();

  const double tolerance = 1.0;  // equivalent to 1 pixel.

  for(unsigned int i=0; i<numbeOfParameters; i++)
    {
    // the parameters are negated in order to get the inverse transformation.
    // this only works for comparing translation parameters....
    std::cout << finalParameters[i+offsetOrder] << " == " << -actualParameters[i] << std::endl;
    if( itk::Math::abs ( finalParameters[i+offsetOrder] - (-actualParameters[i]) ) > tolerance )
      {
      std::cout << "Tolerance exceeded at component " << i << std::endl;
      pass = false;
      }
    }

  if( !pass )
    {
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << "Test PASSED." << std::endl;
    return EXIT_SUCCESS;
    }
}

int itkAutoScaledGradientDescentRegistrationTest(int argc, char ** const argv)
{
  if( argc > 6 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " [numberOfIterations=30 shiftOfStep=1.0] ";
    std::cerr << " [estimateLearningRateOnce = true] ";
    std::cerr << " [estimateLearningRateAtEachIteration = false] ";
    std::cerr << " [estimateScales = true] ";
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }
  unsigned int numberOfIterations = 30;
  double shiftOfStep = 1.0;
  bool estimateLearningRateOnce = true;
  bool estimateLearningRateAtEachIteration = false;
  bool estimateScales = true;

  if( argc >= 2 )
    {
    numberOfIterations = atoi( argv[1] );
    }
  if (argc >= 3)
    {
    shiftOfStep = atof( argv[2] );
    }
  if (argc >= 4)
    {
    estimateLearningRateOnce = atoi( argv[3] );
    }
  if (argc >= 5)
    {
    estimateLearningRateAtEachIteration = atoi( argv[4] );
    }
  if (argc >= 6)
    {
    estimateScales = atoi( argv[5] );
    }

  const unsigned int Dimension = 2;

  std::cout << std::endl << "Optimizing translation transform with shift scales" << std::endl;
  typedef itk::TranslationTransform<double, Dimension> TranslationTransformType;
  bool usePhysicalSpaceForShift = false;
  int ret1 = itkAutoScaledGradientDescentRegistrationTestTemplated<TranslationTransformType>(
    numberOfIterations, shiftOfStep, "shift", usePhysicalSpaceForShift,
    estimateLearningRateOnce, estimateLearningRateAtEachIteration, estimateScales);

  std::cout << std::endl << "Optimizing translation transform with Jacobian scales" << std::endl;
  typedef itk::TranslationTransform<double, Dimension> TranslationTransformType;
  int ret2 = itkAutoScaledGradientDescentRegistrationTestTemplated<TranslationTransformType>(
    numberOfIterations, 0.0, "jacobian", usePhysicalSpaceForShift,
    estimateLearningRateOnce, estimateLearningRateAtEachIteration, estimateScales);

  if ( ret1 == EXIT_SUCCESS && ret2 == EXIT_SUCCESS )
    {
    return EXIT_SUCCESS;
    }
  else
    {
    return EXIT_FAILURE;
    }
}