File: itkCovarianceSampleFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (140 lines) | stat: -rw-r--r-- 5,052 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCovarianceSampleFilter_h
#define itkCovarianceSampleFilter_h

#include "itkProcessObject.h"

#include "itkVariableSizeMatrix.h"
#include "itkSimpleDataObjectDecorator.h"

namespace itk
{
namespace Statistics
{
/** \class CovarianceSampleFilter
 * \brief Calculates the covariance matrix of the target sample data.
 *
 * The filter calculates first the sample mean and use it in the covariance
 * calculation. The covariance is computed as follows
 * Let \f$\Sigma\f$ denotes covariance matrix for the sample, then:
 * When \f$x_{i}\f$ is \f$i\f$th component of a measurement vector
 * \f$\vec x\f$, \f$\mu_{i}\f$ is the \f$i\f$th component of the \f$\vec\mu\f$,
 * and the \f$\sigma_{ij}\f$ is the \f$ij\f$th component \f$\Sigma\f$,
 * \f$\sigma_{ij} = (x_{i} - \mu_{i})(x_{j} - \mu_{j})\f$
 *
 * This estimator is an unbiased one, because it divisor in the covariance
 * computation takes into account that one degree of freedom has been taken
 * for computing the mean.
 *
 * Without the plugged in mean vector, this calculator will perform
 * the single pass mean and covariance calculation algorithm.
 *
 * \ingroup ITKStatistics
 */

template< typename TSample >
class ITK_TEMPLATE_EXPORT CovarianceSampleFilter:
  public ProcessObject
{
public:
  /** Standard class typedefs. */
  typedef CovarianceSampleFilter     Self;
  typedef ProcessObject              Superclass;
  typedef SmartPointer< Self >       Pointer;
  typedef SmartPointer< const Self > ConstPointer;
  typedef TSample                    SampleType;

  /** Standard Macros */
  itkTypeMacro(CovarianceSampleFilter, ProcessObject);
  itkNewMacro(Self);

  /** Type of each measurement vector in sample */
  typedef typename SampleType::MeasurementVectorType                  MeasurementVectorType;

  /** Type of the length of each measurement vector */
  typedef typename SampleType::MeasurementVectorSizeType              MeasurementVectorSizeType;

  /** Type of measurement vector component value */
  typedef typename SampleType::MeasurementType                        MeasurementType;

  /** Type of a measurement vector, holding floating point values */
  typedef typename NumericTraits< MeasurementVectorType >::RealType   MeasurementVectorRealType;

  /** Type of a floating point measurement component value */
  typedef typename NumericTraits< MeasurementType >::RealType         MeasurementRealType;


  /** Method to set the sample */
  using Superclass::SetInput;
  void SetInput(const SampleType *sample);

  /** Method to get the sample */
  const SampleType *  GetInput() const;


  /** Type of covariance matrix output */
  typedef VariableSizeMatrix< MeasurementRealType > MatrixType;

  /** Return the covariance matrix */
  const MatrixType GetCovarianceMatrix() const;

  /** VariableSizeMatrix is not a DataObject, we need to decorate it to push it down
   * a ProcessObject's pipeline */
  typedef SimpleDataObjectDecorator< MatrixType > MatrixDecoratedType;
  const MatrixDecoratedType * GetCovarianceMatrixOutput() const;


  /** Return the mean vector */
  const MeasurementVectorRealType GetMean() const;

  /** MeasurementVector is not a DataObject, we need to decorate it to push it down
   * a ProcessObject's pipeline */
  typedef SimpleDataObjectDecorator< MeasurementVectorRealType > MeasurementVectorDecoratedType;
  const MeasurementVectorDecoratedType * GetMeanOutput() const;
  typedef MeasurementVectorDecoratedType                         OutputType;


  MeasurementVectorSizeType GetMeasurementVectorSize() const;

protected:
  CovarianceSampleFilter();
  virtual ~CovarianceSampleFilter() ITK_OVERRIDE;
  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  /** DataObject pointer */
  typedef DataObject::Pointer DataObjectPointer;

  typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType idx) ITK_OVERRIDE;

  virtual void GenerateData() ITK_OVERRIDE;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(CovarianceSampleFilter);

};  // end of class
} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCovarianceSampleFilter.hxx"
#endif

#endif