File: itkCovarianceSampleFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (250 lines) | stat: -rw-r--r-- 7,865 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCovarianceSampleFilter_hxx
#define itkCovarianceSampleFilter_hxx

#include "itkCovarianceSampleFilter.h"
#include "itkMeanSampleFilter.h"

namespace itk
{
namespace Statistics
{
template< typename TSample >
CovarianceSampleFilter< TSample >
::CovarianceSampleFilter()
{
  this->ProcessObject::SetNumberOfRequiredInputs(1);
  this->ProcessObject::SetNumberOfRequiredOutputs(2);

  this->ProcessObject::SetNthOutput( 0, this->MakeOutput(0) );
  this->ProcessObject::SetNthOutput( 1, this->MakeOutput(1) );
}

template< typename TSample >
CovarianceSampleFilter< TSample >
::~CovarianceSampleFilter()
{}

template< typename TSample >
void
CovarianceSampleFilter< TSample >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template< typename TSample >
void
CovarianceSampleFilter< TSample >
::SetInput(const SampleType *sample)
{
  this->ProcessObject::SetNthInput( 0, const_cast< SampleType * >( sample ) );
}

template< typename TSample >
const TSample *
CovarianceSampleFilter< TSample >
::GetInput() const
{
  return itkDynamicCastInDebugMode< const SampleType * >( this->GetPrimaryInput() );
}

template< typename TSample >
typename CovarianceSampleFilter< TSample >::DataObjectPointer
CovarianceSampleFilter< TSample >
::MakeOutput(DataObjectPointerArraySizeType index)
{
  MeasurementVectorSizeType measurementVectorSize = this->GetMeasurementVectorSize();

  if ( index == 0 )
    {
    MatrixType covarianceMatrix(measurementVectorSize, measurementVectorSize);
    covarianceMatrix.SetIdentity();
    typename MatrixDecoratedType::Pointer decoratedCovarianceMatrix = MatrixDecoratedType::New();
    decoratedCovarianceMatrix->Set(covarianceMatrix);
    return decoratedCovarianceMatrix.GetPointer();
    }

  if ( index == 1 )
    {
    MeasurementVectorRealType mean;
    (void)mean; // for complainty pants : valgrind
    NumericTraits<MeasurementVectorRealType>::SetLength(mean, this->GetMeasurementVectorSize());
    // NumericTraits::SetLength also initializes array to zero
    typename MeasurementVectorDecoratedType::Pointer decoratedMean = MeasurementVectorDecoratedType::New();
    decoratedMean->Set( mean );
    return decoratedMean.GetPointer();
    }
  itkExceptionMacro("Trying to create output of index " << index << " larger than the number of output");
}

template< typename TSample >
typename CovarianceSampleFilter< TSample >::MeasurementVectorSizeType
CovarianceSampleFilter< TSample >
::GetMeasurementVectorSize() const
{
  const SampleType *input = this->GetInput();

  if ( input )
    {
    return input->GetMeasurementVectorSize();
    }

  // Test if the Vector type knows its length
  MeasurementVectorType     vector;
  MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength(vector);

  if ( measurementVectorSize )
    {
    return measurementVectorSize;
    }

  measurementVectorSize = 1; // Otherwise set it to an innocuous value

  return measurementVectorSize;
}

template< typename TSample >
inline void
CovarianceSampleFilter< TSample >
::GenerateData()
{
  // set up input / output
  const SampleType *input = this->GetInput();

  MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  MatrixDecoratedType *decoratedOutput =
    itkDynamicCastInDebugMode< MatrixDecoratedType * >( this->ProcessObject::GetOutput(0) );

  MatrixType output = decoratedOutput->Get();
  output.SetSize( measurementVectorSize, measurementVectorSize );
  output.Fill( NumericTraits< typename MatrixType::ValueType >::ZeroValue() );

  MeasurementVectorDecoratedType *decoratedMeanOutput =
    itkDynamicCastInDebugMode< MeasurementVectorDecoratedType * >( this->ProcessObject::GetOutput(1) );

  // calculate mean
  typedef MeanSampleFilter< SampleType > MeanFilterType;
  typename MeanFilterType::Pointer meanFilter = MeanFilterType::New();

  meanFilter->SetInput( input );
  meanFilter->Update();

  const typename MeanFilterType::MeasurementVectorRealType mean = meanFilter->GetMean();
  decoratedMeanOutput->Set( mean );

  // covariance algorithm
  MeasurementVectorRealType diff;
  NumericTraits<MeasurementVectorRealType>::SetLength( diff, measurementVectorSize );

  typedef typename SampleType::TotalAbsoluteFrequencyType TotalFrequencyType;
  TotalFrequencyType totalFrequency = NumericTraits< TotalFrequencyType >::ZeroValue();

  typename SampleType::ConstIterator iter =      input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  // fills the lower triangle and the diagonal cells in the covariance matrix
  for (; iter != end; ++iter )
    {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
    totalFrequency += frequency;

    for ( unsigned int dim = 0; dim < measurementVectorSize; ++dim )
      {
      const MeasurementRealType component =
        static_cast< MeasurementRealType >( measurement[dim] );

      diff[dim] = ( component - mean[dim] );
      }

    // updates the covariance matrix
    for ( unsigned int row = 0; row < measurementVectorSize; ++row )
      {
      for ( unsigned int col = 0; col < row + 1; ++col )
        {
        output(row, col) +=
          ( static_cast< MeasurementRealType >( frequency ) * diff[row] * diff[col] );
        }
      }
    }

  // fills the upper triangle using the lower triangle
  for ( unsigned int row = 1; row < measurementVectorSize; ++row )
    {
    for ( unsigned int col = 0; col < row; ++col )
      {
      output(col, row) = output(row, col);
      }
    }

  const double normalizationFactor =
    ( static_cast< MeasurementRealType >( totalFrequency ) - 1.0 );

  if( normalizationFactor > itk::Math::eps )
    {
    const double inverseNormalizationFactor = 1.0 / normalizationFactor;

    output *= inverseNormalizationFactor;
    }
  else
    {
    itkExceptionMacro("Total Frequency was too close to 1.0. Value = " << totalFrequency );
    }

  decoratedOutput->Set( output );
}

template< typename TSample >
const typename CovarianceSampleFilter< TSample >::MatrixDecoratedType *
CovarianceSampleFilter< TSample >
::GetCovarianceMatrixOutput() const
{
  return static_cast< const MatrixDecoratedType * >( this->ProcessObject::GetOutput(0) );
}

template< typename TSample >
const typename CovarianceSampleFilter< TSample >::MatrixType
CovarianceSampleFilter< TSample >
::GetCovarianceMatrix() const
{
  return this->GetCovarianceMatrixOutput()->Get();
}

template< typename TSample >
const typename CovarianceSampleFilter< TSample >::MeasurementVectorDecoratedType *
CovarianceSampleFilter< TSample >
::GetMeanOutput() const
{
  return static_cast< const MeasurementVectorDecoratedType * >( this->ProcessObject::GetOutput(1) );
}

template< typename TSample >
const typename CovarianceSampleFilter< TSample >::MeasurementVectorRealType
CovarianceSampleFilter< TSample >
::GetMean() const
{
  return this->GetMeanOutput()->Get();
}
} // end of namespace Statistics
} // end of namespace itk

#endif