1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkHistogramToRunLengthFeaturesFilter_h
#define itkHistogramToRunLengthFeaturesFilter_h
#include "itkHistogram.h"
#include "itkMacro.h"
#include "itkProcessObject.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk {
namespace Statistics {
/** \class HistogramToRunLengthFeaturesFilter
* \brief This class computes texture feature coefficients from a grey level
* run-length matrix.
*
* By default, run length features are computed for each spatial
* direction and then averaged afterward, so it is possible to access the
* standard deviations of the texture features. These values give a clue as
* to texture anisotropy. However, doing this is much more work, because it
* involved computing one for each offset given. To compute a single matrix
* using the first offset, call FastCalculationsOn(). If this is called,
* then the texture standard deviations will not be computed (and will be set
* to zero), but texture computation will be much faster.
*
* This class is templated over the input histogram type.
*
* Print references:
* M. M. Galloway. Texture analysis using gray level run lengths. Computer
* Graphics and Image Processing, 4:172-179, 1975.
*
* A. Chu, C. M. Sehgal, and J. F. Greenleaf. Use of gray value distribution of
* run lengths for texture analysis. Pattern Recognition Letters, 11:415-420,
* 1990.
*
* B. R. Dasarathy and E. B. Holder. Image characterizations based on joint
* gray-level run-length distributions. Pattern Recognition Letters, 12:490-502,
* 1991.
*
* IJ article: https://hdl.handle.net/1926/1374
*
* \sa ScalarImageToRunLengthFeaturesFilter
* \sa ScalarImageToRunLengthMatrixFilter
* \sa HistogramToRunLengthFeaturesFilter
*
* \author: Nick Tustison
* \ingroup ITKStatistics
*/
template< typename THistogram >
class ITK_TEMPLATE_EXPORT HistogramToRunLengthFeaturesFilter : public ProcessObject
{
public:
/** Standard typedefs */
typedef HistogramToRunLengthFeaturesFilter Self;
typedef ProcessObject Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro( HistogramToRunLengthFeaturesFilter, ProcessObject );
/** standard New() method support */
itkNewMacro( Self );
typedef THistogram HistogramType;
typedef typename HistogramType::Pointer HistogramPointer;
typedef typename HistogramType::ConstPointer HistogramConstPointer;
typedef typename HistogramType::MeasurementType MeasurementType;
typedef typename HistogramType::MeasurementVectorType MeasurementVectorType;
typedef typename HistogramType::IndexType IndexType;
typedef typename HistogramType::
TotalAbsoluteFrequencyType FrequencyType;
/** Method to Set/Get the input Histogram */
using Superclass::SetInput;
void SetInput ( const HistogramType * histogram );
const HistogramType * GetInput() const;
/** Smart Pointer type to a DataObject. */
typedef DataObject::Pointer DataObjectPointer;
/** Type of DataObjects used for scalar outputs */
typedef SimpleDataObjectDecorator<MeasurementType> MeasurementObjectType;
/** Methods to return the short run emphasis. */
MeasurementType GetShortRunEmphasis() const;
const MeasurementObjectType* GetShortRunEmphasisOutput() const;
/** Methods to return the long run emphasis. */
MeasurementType GetLongRunEmphasis() const;
const MeasurementObjectType* GetLongRunEmphasisOutput() const;
/** Methods to return the grey level nonuniformity. */
MeasurementType GetGreyLevelNonuniformity() const;
const MeasurementObjectType* GetGreyLevelNonuniformityOutput() const;
/** Methods to return the run length nonuniformity. */
MeasurementType GetRunLengthNonuniformity() const;
const MeasurementObjectType* GetRunLengthNonuniformityOutput() const;
/** Methods to return the low grey level run emphasis. */
MeasurementType GetLowGreyLevelRunEmphasis() const;
const MeasurementObjectType* GetLowGreyLevelRunEmphasisOutput() const;
/** Methods to return the high grey level run emphasis. */
MeasurementType GetHighGreyLevelRunEmphasis() const;
const MeasurementObjectType* GetHighGreyLevelRunEmphasisOutput() const;
/** Methods to return the short run low grey level run emphasis. */
MeasurementType GetShortRunLowGreyLevelEmphasis() const;
const MeasurementObjectType* GetShortRunLowGreyLevelEmphasisOutput() const;
/** Methods to return the short run high grey level run emphasis. */
MeasurementType GetShortRunHighGreyLevelEmphasis() const;
const MeasurementObjectType* GetShortRunHighGreyLevelEmphasisOutput() const;
/** Methods to return the long run low grey level run emphasis. */
MeasurementType GetLongRunLowGreyLevelEmphasis() const;
const MeasurementObjectType* GetLongRunLowGreyLevelEmphasisOutput() const;
/** Methods to return the long run high grey level run emphasis. */
MeasurementType GetLongRunHighGreyLevelEmphasis() const;
const MeasurementObjectType* GetLongRunHighGreyLevelEmphasisOutput() const;
itkGetMacro( TotalNumberOfRuns, unsigned long );
/** Run-length feature types */
typedef enum
{
ShortRunEmphasis,
LongRunEmphasis,
GreyLevelNonuniformity,
RunLengthNonuniformity,
LowGreyLevelRunEmphasis,
HighGreyLevelRunEmphasis,
ShortRunLowGreyLevelEmphasis,
ShortRunHighGreyLevelEmphasis,
LongRunLowGreyLevelEmphasis,
LongRunHighGreyLevelEmphasis
} RunLengthFeatureName;
/** convenience method to access the run length values */
MeasurementType GetFeature( RunLengthFeatureName name );
protected:
HistogramToRunLengthFeaturesFilter();
~HistogramToRunLengthFeaturesFilter() ITK_OVERRIDE {};
virtual void PrintSelf(std::ostream& os, Indent indent) const ITK_OVERRIDE;
/** Make a DataObject to be used for output output. */
typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
virtual DataObjectPointer MakeOutput( DataObjectPointerArraySizeType ) ITK_OVERRIDE;
virtual void GenerateData() ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(HistogramToRunLengthFeaturesFilter);
unsigned long m_TotalNumberOfRuns;
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkHistogramToRunLengthFeaturesFilter.hxx"
#endif
#endif
|