1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkHistogramToTextureFeaturesFilter_h
#define itkHistogramToTextureFeaturesFilter_h
#include "itkHistogram.h"
#include "itkMacro.h"
#include "itkProcessObject.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk
{
namespace Statistics
{
/** \class HistogramToTextureFeaturesFilter
* \brief This class computes texture feature coefficients from a grey level
* co-occurrence matrix.
*
* This class computes features that summarize image texture, given a grey level
* co-occurrence matrix (generated by a ScalarImageToCooccurrenceMatrixFilter
* or related class).
*
* The features calculated are as follows (where \f$ g(i, j) \f$ is the element in
* cell i, j of a a normalized GLCM):
*
* "Energy" \f$ = f_1 = \sum_{i,j}g(i, j)^2 \f$
*
* "Entropy" \f$ = f_2 = -\sum_{i,j}g(i, j) \log_2 g(i, j)\f$, or 0 if \f$g(i, j) = 0\f$
*
* "Correlation" \f$ = f_3 = \sum_{i,j}\frac{(i - \mu)(j - \mu)g(i, j)}{\sigma^2} \f$
*
* "Difference Moment" \f$= f_4 = \sum_{i,j}\frac{1}{1 + (i - j)^2}g(i, j) \f$
*
* "Inertia" \f$ = f_5 = \sum_{i,j}(i - j)^2g(i, j) \f$ (sometimes called "contrast.")
*
* "Cluster Shade" \f$ = f_6 = \sum_{i,j}((i - \mu) + (j - \mu))^3 g(i, j) \f$
*
* "Cluster Prominence" \f$ = f_7 = \sum_{i,j}((i - \mu) + (j - \mu))^4 g(i, j) \f$
*
* "Haralick's Correlation" \f$ = f_8 = \frac{\sum_{i,j}(i, j) g(i, j) -\mu_t^2}{\sigma_t^2} \f$
* where \f$\mu_t\f$ and \f$\sigma_t\f$ are the mean and standard deviation of the row
* (or column, due to symmetry) sums.
*
* Above, \f$ \mu = \f$ (weighted pixel average) \f$ = \sum_{i,j}i \cdot g(i, j) =
* \sum_{i,j}j \cdot g(i, j) \f$ (due to matrix summetry), and
*
* \f$ \sigma = \f$ (weighted pixel variance) \f$ = \sum_{i,j}(i - \mu)^2 \cdot g(i, j) =
* \sum_{i,j}(j - \mu)^2 \cdot g(i, j) \f$ (due to matrix summetry)
*
* A good texture feature set to use is the Conners, Trivedi and Harlow set:
* features 1, 2, 4, 5, 6, and 7. There is some correlation between the various
* features, so using all of them at the same time is not necessarialy a good idea.
*
* NOTA BENE: The input histogram will be forcably normalized!
* This algorithm takes three passes through the input
* histogram if the histogram was already normalized, and four if not.
*
* Web references:
*
* http://www.cssip.uq.edu.au/meastex/www/algs/algs/algs.html
* http://www.ucalgary.ca/~mhallbey/texture/texture_tutorial.html
*
* Print references:
*
* Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
* Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
* SMC-3(6):610-620.
*
* Haralick, R.M. 1979. Statistical and Structural Approaches to Texture.
* Proceedings of the IEEE, 67:786-804.
*
* R.W. Conners and C.A. Harlow. A Theoretical Comaprison of Texture Algorithms.
* IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:204-222, 1980.
*
* R.W. Conners, M.M. Trivedi, and C.A. Harlow. Segmentation of a High-Resolution
* Urban Scene using Texture Operators. Computer Vision, Graphics and Image
* Processing, 25:273-310, 1984.
*
* \sa ScalarImageToCooccurrenceMatrixFilter
* \sa ScalarImageToTextureFeaturesFilter
*
* Author: Zachary Pincus
* \ingroup ITKStatistics
*/
template< typename THistogram >
class ITK_TEMPLATE_EXPORT HistogramToTextureFeaturesFilter:public ProcessObject
{
public:
/** Standard typedefs */
typedef HistogramToTextureFeaturesFilter Self;
typedef ProcessObject Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(HistogramToTextureFeaturesFilter, ProcessObject);
/** standard New() method support */
itkNewMacro(Self);
typedef THistogram HistogramType;
typedef typename HistogramType::Pointer HistogramPointer;
typedef typename HistogramType::ConstPointer HistogramConstPointer;
typedef typename HistogramType::MeasurementType MeasurementType;
typedef typename HistogramType::MeasurementVectorType MeasurementVectorType;
typedef typename HistogramType::IndexType IndexType;
typedef typename HistogramType::AbsoluteFrequencyType AbsoluteFrequencyType;
typedef typename HistogramType::RelativeFrequencyType RelativeFrequencyType;
typedef typename HistogramType::TotalAbsoluteFrequencyType
TotalAbsoluteFrequencyType;
typedef typename HistogramType::TotalRelativeFrequencyType
TotalRelativeFrequencyType;
/** Container to hold relative frequencies of the histogram */
typedef std::vector< RelativeFrequencyType > RelativeFrequencyContainerType;
/** Method to Set/Get the input Histogram */
using Superclass::SetInput;
void SetInput(const HistogramType *histogram);
const HistogramType * GetInput() const;
/** Smart Pointer type to a DataObject. */
typedef DataObject::Pointer DataObjectPointer;
/** Type of DataObjects used for scalar outputs */
typedef SimpleDataObjectDecorator< MeasurementType > MeasurementObjectType;
/** Return energy texture value. */
MeasurementType GetEnergy() const;
const MeasurementObjectType * GetEnergyOutput() const;
/** Return entropy texture value. */
MeasurementType GetEntropy() const;
const MeasurementObjectType * GetEntropyOutput() const;
/** return correlation texture value. */
MeasurementType GetCorrelation() const;
const MeasurementObjectType * GetCorrelationOutput() const;
/** Return inverse difference moment texture value. */
MeasurementType GetInverseDifferenceMoment() const;
const MeasurementObjectType * GetInverseDifferenceMomentOutput() const;
/** Return inertia texture value. */
MeasurementType GetInertia() const;
const MeasurementObjectType * GetInertiaOutput() const;
/** Return cluster shade texture value. */
MeasurementType GetClusterShade() const;
const MeasurementObjectType * GetClusterShadeOutput() const;
/** Return cluster prominence texture value. */
MeasurementType GetClusterProminence() const;
const MeasurementObjectType * GetClusterProminenceOutput() const;
/** Return Haralick correlation texture value. */
MeasurementType GetHaralickCorrelation() const;
const MeasurementObjectType * GetHaralickCorrelationOutput() const;
/** Texture feature types */
typedef enum {
Energy,
Entropy,
Correlation,
InverseDifferenceMoment,
Inertia,
ClusterShade,
ClusterProminence,
HaralickCorrelation,
InvalidFeatureName
} TextureFeatureName;
/** convenience method to access the texture values */
MeasurementType GetFeature(TextureFeatureName name);
protected:
HistogramToTextureFeaturesFilter();
~HistogramToTextureFeaturesFilter() ITK_OVERRIDE {}
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** Make a DataObject to be used for output output. */
typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType) ITK_OVERRIDE;
virtual void GenerateData() ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(HistogramToTextureFeaturesFilter);
void ComputeMeansAndVariances(double & pixelMean, double & marginalMean,
double & marginalDevSquared, double & pixelVariance);
RelativeFrequencyContainerType m_RelativeFrequencyContainer;
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkHistogramToTextureFeaturesFilter.hxx"
#endif
#endif
|