File: itkImageToHistogramFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (405 lines) | stat: -rw-r--r-- 12,978 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageToHistogramFilter_hxx
#define itkImageToHistogramFilter_hxx

#include "itkImageToHistogramFilter.h"
#include "itkImageRegionConstIterator.h"

namespace itk
{
namespace Statistics
{
template< typename TImage >
ImageToHistogramFilter< TImage >
::ImageToHistogramFilter()
{
  this->SetNumberOfRequiredInputs(1);
  this->SetNumberOfRequiredOutputs(1);

  this->ProcessObject::SetNthOutput( 0, this->MakeOutput(0) );

  // same default values as in the HistogramGenerator

  typename SimpleDataObjectDecorator<HistogramMeasurementType>::Pointer marginalScale =
    SimpleDataObjectDecorator<HistogramMeasurementType>::New();
  marginalScale->Set(100);
  this->ProcessObject::SetInput( "MarginalScale", marginalScale );

  SimpleDataObjectDecorator<bool>::Pointer autoMinMax =
    SimpleDataObjectDecorator<bool>::New();
  if( typeid(ValueType) == typeid(signed char) || typeid(ValueType) == typeid(unsigned char) )
    {
    autoMinMax->Set(false);
    }
  else
    {
    autoMinMax->Set(true);
    }
   this->ProcessObject::SetInput( "AutoMinimumMaximum", autoMinMax );
}

template< typename TImage >
DataObject::Pointer
ImageToHistogramFilter< TImage >
::MakeOutput( DataObjectPointerArraySizeType itkNotUsed(idx) )
{
  return HistogramType::New().GetPointer();
}

template< typename TImage >
const typename ImageToHistogramFilter< TImage >::HistogramType *
ImageToHistogramFilter< TImage >
::GetOutput() const
{
  const HistogramType *output =
    itkDynamicCastInDebugMode< const HistogramType * >( this->ProcessObject::GetOutput(0) );

  return output;
}

template< typename TImage >
typename ImageToHistogramFilter< TImage >::HistogramType *
ImageToHistogramFilter< TImage >
::GetOutput()
{
  HistogramType *output =
    static_cast< HistogramType * >( this->ProcessObject::GetOutput(0) );

  return output;
}

template< typename TImage >
void
ImageToHistogramFilter< TImage >
::GraftOutput(DataObject *graft)
{
  DataObject *output =
    const_cast< HistogramType * >( this->GetOutput() );

  // Call Histogram to copy meta-information, and the container
  output->Graft(graft);
}


template< typename TImage >
void
ImageToHistogramFilter< TImage >
::BeforeThreadedGenerateData()
{
  // find the actual number of threads
  long nbOfThreads = this->GetNumberOfThreads();
  if ( itk::MultiThreader::GetGlobalMaximumNumberOfThreads() != 0 )
    {
    nbOfThreads = std::min( this->GetNumberOfThreads(), itk::MultiThreader::GetGlobalMaximumNumberOfThreads() );
    }
  // number of threads can be constrained by the region size, so call the
  // SplitRequestedRegion
  // to get the real number of threads which will be used
  RegionType splitRegion;  // dummy region - just to call the following method
  nbOfThreads = this->SplitRequestedRegion(0, nbOfThreads, splitRegion);

  // and allocate one histogram per thread
  m_Histograms.resize(nbOfThreads);
  m_Minimums.resize(nbOfThreads);
  m_Maximums.resize(nbOfThreads);
  m_Barrier = Barrier::New();
  m_Barrier->Initialize(nbOfThreads);
}


template< typename TImage >
void
ImageToHistogramFilter< TImage >
::ThreadedGenerateData(const RegionType & inputRegionForThread, ThreadIdType threadId)
{
  long nbOfPixels = inputRegionForThread.GetNumberOfPixels();
  if( this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum() )
    {
    // we'll have to iterate over all the pixels 2 times
    nbOfPixels *= 2;
    }
  ProgressReporter progress( this, threadId, nbOfPixels );

  if( threadId == 0 )
    {
    // just use the main one
    m_Histograms[threadId] = this->GetOutput();
    }
  else
    {
    m_Histograms[threadId] = HistogramType::New();
    }
  HistogramType * hist = m_Histograms[threadId];
  hist->SetClipBinsAtEnds(true);

  // the parameter needed to initialize the histogram
  unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  HistogramSizeType size( nbOfComponents );
  HistogramMeasurementVectorType min( nbOfComponents );
  HistogramMeasurementVectorType max( nbOfComponents );
  if( this->GetHistogramSizeInput() )
    {
    // user provided value
    size = this->GetHistogramSize();
    }
  else
    {
    // use a default value, which must be computed at run time for the VectorImage
    size.Fill(256);
    }

  if( this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum() )
    {
    // we have to compute the minimum and maximum values
    this->ThreadedComputeMinimumAndMaximum( inputRegionForThread, threadId, progress );

    // wait for the other threads to complete their part
    m_Barrier->Wait();

    // a non multithreaded part
    if( threadId == 0 )
      {
      min = m_Minimums[0];
      max = m_Maximums[0];
      for( unsigned int t=1; t<m_Minimums.size(); t++ )
        {
        for( unsigned int i=0; i<nbOfComponents; i++ )
          {
          min[i] = std::min( min[i], m_Minimums[t][i] );
          max[i] = std::max( max[i], m_Maximums[t][i] );
          }
        }
      this->ApplyMarginalScale( min, max, size );
      // store the values so they can be retreived by the other threads
      m_Minimums[0] = min;
      m_Maximums[0] = max;
      }

    // wait for all the threads to complete
    m_Barrier->Wait();

    // and get the values computed in the main thread
    min = m_Minimums[0];
    max = m_Maximums[0];
    }
  else
    {
    if( this->GetHistogramBinMinimumInput() )
      {
      min = this->GetHistogramBinMinimum();
      }
    else
      {
      min.Fill( NumericTraits<ValueType>::NonpositiveMin() - 0.5 );
      }
    if( this->GetHistogramBinMaximumInput() )
      {
      max = this->GetHistogramBinMaximum();
      }
    else
      {
      max.Fill( NumericTraits<ValueType>::max() + 0.5 );
      // this->ApplyMarginalScale( min, max, size );
      }
    }

  // finally, initialize the histogram
  hist->SetMeasurementVectorSize( nbOfComponents );
  hist->Initialize( size, min, max );

  // now fill the histograms
  this->ThreadedComputeHistogram( inputRegionForThread, threadId, progress );
}


template< typename TImage >
void
ImageToHistogramFilter< TImage >
::AfterThreadedGenerateData()
{
  // group the results in the output histogram
  HistogramType * hist = m_Histograms[0];
  typename HistogramType::IndexType index;
  for( unsigned int i=1; i<m_Histograms.size(); i++ )
    {
    typedef typename HistogramType::ConstIterator         HistogramIterator;

    HistogramIterator hit = m_Histograms[i]->Begin();
    HistogramIterator end = m_Histograms[i]->End();
    while ( hit != end )
      {
      hist->GetIndex( hit.GetMeasurementVector(), index);
      hist->IncreaseFrequencyOfIndex( index, hit.GetFrequency() );
      ++hit;
      }
    }

  // and drop the temporary histograms
  m_Histograms.clear();
  m_Minimums.clear();
  m_Maximums.clear();
  m_Barrier = ITK_NULLPTR;
}


template< typename TImage >
void
ImageToHistogramFilter< TImage >
::ThreadedComputeMinimumAndMaximum(const RegionType & inputRegionForThread, ThreadIdType threadId, ProgressReporter & progress )
{
  unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  HistogramMeasurementVectorType min( nbOfComponents );
  HistogramMeasurementVectorType max( nbOfComponents );

  ImageRegionConstIterator< TImage > inputIt( this->GetInput(), inputRegionForThread );
  inputIt.GoToBegin();
  HistogramMeasurementVectorType m( nbOfComponents );

  min.Fill( NumericTraits<ValueType>::max() );
  max.Fill( NumericTraits<ValueType>::NonpositiveMin() );
  while ( !inputIt.IsAtEnd() )
    {
    const PixelType & p = inputIt.Get();
    NumericTraits<PixelType>::AssignToArray( p, m );
    for( unsigned int i=0; i<nbOfComponents; i++ )
      {
      min[i] = std::min( m[i], min[i] );
      max[i] = std::max( m[i], max[i] );
      }
    progress.CompletedPixel();  // potential exception thrown here
    ++inputIt;
    }
  m_Minimums[threadId] = min;
  m_Maximums[threadId] = max;
}

template< typename TImage >
void
ImageToHistogramFilter< TImage >
::ThreadedComputeHistogram(const RegionType & inputRegionForThread, ThreadIdType threadId, ProgressReporter & progress )
{
  unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  ImageRegionConstIterator< TImage > inputIt( this->GetInput(), inputRegionForThread );
  inputIt.GoToBegin();
  HistogramMeasurementVectorType m( nbOfComponents );

  typename HistogramType::IndexType index;
  while ( !inputIt.IsAtEnd() )
    {
    const PixelType & p = inputIt.Get();
    NumericTraits<PixelType>::AssignToArray( p, m );
    m_Histograms[threadId]->GetIndex( m, index );
    m_Histograms[threadId]->IncreaseFrequencyOfIndex( index, 1 );
    ++inputIt;
    progress.CompletedPixel();  // potential exception thrown here
    }
}

template< typename TImage >
void
ImageToHistogramFilter< TImage >
::ApplyMarginalScale( HistogramMeasurementVectorType & min, HistogramMeasurementVectorType & max, HistogramSizeType & size )
{
  unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  bool clipHistograms = true;
  for ( unsigned int i = 0; i < nbOfComponents; i++ )
    {
    if ( !NumericTraits< HistogramMeasurementType >::is_integer )
      {
      HistogramMeasurementType marginalScale = this->GetMarginalScale();
      const double margin =
        ( static_cast< HistogramMeasurementType >( max[i] - min[i] )
          / static_cast< HistogramMeasurementType >( size[i] ) )
        / static_cast< HistogramMeasurementType >( marginalScale );

      // Now we check if the max[i] value can be increased by
      // the margin value without saturating the capacity of the
      // HistogramMeasurementType
      if ( ( NumericTraits< HistogramMeasurementType >::max() - max[i] ) > margin )
        {
        max[i] = static_cast< HistogramMeasurementType >( max[i] + margin );
        }
      else
        {
        // an overflow would occur if we add 'margin' to the max
        // therefore we just compromise in setting max = max.
        // Histogram measurement type would force the clipping the max
        // value.
        // Therefore we must call the following to include the max value:
        clipHistograms = false;
        // The above function is okay since here we are within the
        // autoMinMax
        // computation and clearly the user intended to include min and max.
        }
      }
    else
      {
      // max[i] = SafeAssign(max[i] + NumericTraits<MeasurementType>::OneValue());
      // if ( max[i] <= max[i] )
      if(max[i] <
          (static_cast<ValueType>
          (NumericTraits<HistogramMeasurementType>::max()) -
          NumericTraits<ValueType>::OneValue()))
        {
        max[i] = static_cast<HistogramMeasurementType>
          (max[i] + NumericTraits<ValueType>::OneValue());
        }
      else
        {
        // an overflow would have occurred, therefore set max to max
        // Histogram measurement type would force the clipping the max
        // value.
        // Therefore we must call the following to include the max value:
        clipHistograms = false;
        // The above function is okay since here we are within the
        // autoMinMax
        // computation and clearly the user intended to include min and max.
        }
      }
    }
  if( clipHistograms == false )
    {
    for( unsigned int i=0; i<m_Histograms.size(); i++ )
      {
      m_Histograms[i]->SetClipBinsAtEnds(false);
      }
    }
}

template< typename TImage >
void
ImageToHistogramFilter< TImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  // m_HistogramBinMinimum
  os << indent << "HistogramBinMinimum: " << this->GetHistogramBinMinimumInput() << std::endl;
  // m_HistogramBinMaximum
  os << indent << "HistogramBinMaximum: " << this->GetHistogramBinMaximumInput() << std::endl;
  // m_MarginalScale
  os << indent << "MarginalScale: " << this->GetMarginalScaleInput() << std::endl;
  // m_AutoMinimumMaximum
  os << indent << "AutoMinimumMaximum: " << this->GetAutoMinimumMaximumInput() << std::endl;
  // m_HistogramSize
  os << indent << "HistogramSize: " << this->GetHistogramSizeInput() << std::endl;
}
} // end of namespace Statistics
} // end of namespace itk

#endif