File: itkMeanSampleFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 5,725 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMeanSampleFilter_hxx
#define itkMeanSampleFilter_hxx

#include "itkMeanSampleFilter.h"

#include <vector>
#include "itkCompensatedSummation.h"
#include "itkMeasurementVectorTraits.h"

namespace itk
{
namespace Statistics
{
template< typename TSample >
MeanSampleFilter< TSample >
::MeanSampleFilter()
{
  this->ProcessObject::SetNumberOfRequiredInputs(1);
  this->ProcessObject::SetNumberOfRequiredOutputs(1);

  this->ProcessObject::SetNthOutput( 0, this->MakeOutput(0) );
}

template< typename TSample >
MeanSampleFilter< TSample >
::~MeanSampleFilter()
{}

template< typename TSample >
void
MeanSampleFilter< TSample >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template< typename TSample >
void
MeanSampleFilter< TSample >
::SetInput(const SampleType *sample)
{
  this->ProcessObject::SetNthInput( 0, const_cast< SampleType * >( sample ) );
}

template< typename TSample >
const TSample *
MeanSampleFilter< TSample >
::GetInput() const
{
  return itkDynamicCastInDebugMode< const SampleType * >( this->GetPrimaryInput() );
}

template< typename TSample >
typename MeanSampleFilter< TSample >::DataObjectPointer
MeanSampleFilter< TSample >
::MakeOutput( DataObjectPointerArraySizeType itkNotUsed(idx) )
{
  MeasurementVectorRealType mean;
  (void)mean; // for complainty pants : valgrind
  NumericTraits<MeasurementVectorRealType>::SetLength( mean, this->GetMeasurementVectorSize() );
  // NumericTraits::SetLength also initializes array to zero
  typename MeasurementVectorDecoratedType::Pointer decoratedMean = MeasurementVectorDecoratedType::New();
  decoratedMean->Set( mean );
  return decoratedMean.GetPointer();
}

template< typename TSample >
const typename MeanSampleFilter< TSample >::MeasurementVectorDecoratedType *
MeanSampleFilter< TSample >
::GetOutput() const
{
  return itkDynamicCastInDebugMode< const MeasurementVectorDecoratedType * >(this->ProcessObject::GetOutput(0) );
}

template< typename TSample >
const typename MeanSampleFilter< TSample >::MeasurementVectorRealType
MeanSampleFilter< TSample >
::GetMean() const
{
  const MeasurementVectorDecoratedType * decorator = this->GetOutput();
  return decorator->Get();
}

template< typename TSample >
typename MeanSampleFilter< TSample >::MeasurementVectorSizeType
MeanSampleFilter< TSample >
::GetMeasurementVectorSize() const
{
  const SampleType *input = this->GetInput();

  if ( input )
    {
    return input->GetMeasurementVectorSize();
    }

  // Test if the Vector type knows its length
  MeasurementVectorType     vector;
  MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength(vector);

  if ( measurementVectorSize )
    {
    return measurementVectorSize;
    }

  measurementVectorSize = 1; // Otherwise set it to an innocuous value

  return measurementVectorSize;
}


template< typename TSample >
void
MeanSampleFilter< TSample >
::GenerateData()
{
  // set up input / output
  const SampleType *input = this->GetInput();

  const MeasurementVectorSizeType measurementVectorSize =
    input->GetMeasurementVectorSize();

  MeasurementVectorDecoratedType *decoratedOutput =
    itkDynamicCastInDebugMode< MeasurementVectorDecoratedType * >( this->ProcessObject::GetOutput(0) );

  MeasurementVectorRealType output = decoratedOutput->Get();

  NumericTraits<MeasurementVectorRealType>::SetLength( output, this->GetMeasurementVectorSize() );

  // algorithm start
  typedef CompensatedSummation< MeasurementRealType > MeasurementRealAccumulateType;
  std::vector< MeasurementRealAccumulateType > sum( measurementVectorSize );

  typedef typename SampleType::TotalAbsoluteFrequencyType TotalFrequencyType;
  TotalFrequencyType totalFrequency = NumericTraits< TotalFrequencyType >::ZeroValue();

  typename SampleType::ConstIterator iter =      input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  for (; iter != end; ++iter )
    {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
    totalFrequency += frequency;

    for ( unsigned int dim = 0; dim < measurementVectorSize; dim++ )
      {
      const MeasurementRealType component =
        static_cast< MeasurementRealType >( measurement[dim] );

      sum[dim] += ( component * static_cast< MeasurementRealType >( frequency ) );
      }
    }

  // compute the mean if the total frequency is different from zero
  if ( totalFrequency > itk::Math::eps )
    {
    for ( unsigned int dim = 0; dim < measurementVectorSize; dim++ )
      {
      output[dim] = ( sum[dim].GetSum() / static_cast< MeasurementRealType >( totalFrequency ) );
      }
    }
  else
    {
    itkExceptionMacro("Total frequency was too close to zero: " << totalFrequency );
    }

  decoratedOutput->Set( output );
}
} // end of namespace Statistics
} // end of namespace itk

#endif