1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMeanSampleFilter_hxx
#define itkMeanSampleFilter_hxx
#include "itkMeanSampleFilter.h"
#include <vector>
#include "itkCompensatedSummation.h"
#include "itkMeasurementVectorTraits.h"
namespace itk
{
namespace Statistics
{
template< typename TSample >
MeanSampleFilter< TSample >
::MeanSampleFilter()
{
this->ProcessObject::SetNumberOfRequiredInputs(1);
this->ProcessObject::SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput( 0, this->MakeOutput(0) );
}
template< typename TSample >
MeanSampleFilter< TSample >
::~MeanSampleFilter()
{}
template< typename TSample >
void
MeanSampleFilter< TSample >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
template< typename TSample >
void
MeanSampleFilter< TSample >
::SetInput(const SampleType *sample)
{
this->ProcessObject::SetNthInput( 0, const_cast< SampleType * >( sample ) );
}
template< typename TSample >
const TSample *
MeanSampleFilter< TSample >
::GetInput() const
{
return itkDynamicCastInDebugMode< const SampleType * >( this->GetPrimaryInput() );
}
template< typename TSample >
typename MeanSampleFilter< TSample >::DataObjectPointer
MeanSampleFilter< TSample >
::MakeOutput( DataObjectPointerArraySizeType itkNotUsed(idx) )
{
MeasurementVectorRealType mean;
(void)mean; // for complainty pants : valgrind
NumericTraits<MeasurementVectorRealType>::SetLength( mean, this->GetMeasurementVectorSize() );
// NumericTraits::SetLength also initializes array to zero
typename MeasurementVectorDecoratedType::Pointer decoratedMean = MeasurementVectorDecoratedType::New();
decoratedMean->Set( mean );
return decoratedMean.GetPointer();
}
template< typename TSample >
const typename MeanSampleFilter< TSample >::MeasurementVectorDecoratedType *
MeanSampleFilter< TSample >
::GetOutput() const
{
return itkDynamicCastInDebugMode< const MeasurementVectorDecoratedType * >(this->ProcessObject::GetOutput(0) );
}
template< typename TSample >
const typename MeanSampleFilter< TSample >::MeasurementVectorRealType
MeanSampleFilter< TSample >
::GetMean() const
{
const MeasurementVectorDecoratedType * decorator = this->GetOutput();
return decorator->Get();
}
template< typename TSample >
typename MeanSampleFilter< TSample >::MeasurementVectorSizeType
MeanSampleFilter< TSample >
::GetMeasurementVectorSize() const
{
const SampleType *input = this->GetInput();
if ( input )
{
return input->GetMeasurementVectorSize();
}
// Test if the Vector type knows its length
MeasurementVectorType vector;
MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength(vector);
if ( measurementVectorSize )
{
return measurementVectorSize;
}
measurementVectorSize = 1; // Otherwise set it to an innocuous value
return measurementVectorSize;
}
template< typename TSample >
void
MeanSampleFilter< TSample >
::GenerateData()
{
// set up input / output
const SampleType *input = this->GetInput();
const MeasurementVectorSizeType measurementVectorSize =
input->GetMeasurementVectorSize();
MeasurementVectorDecoratedType *decoratedOutput =
itkDynamicCastInDebugMode< MeasurementVectorDecoratedType * >( this->ProcessObject::GetOutput(0) );
MeasurementVectorRealType output = decoratedOutput->Get();
NumericTraits<MeasurementVectorRealType>::SetLength( output, this->GetMeasurementVectorSize() );
// algorithm start
typedef CompensatedSummation< MeasurementRealType > MeasurementRealAccumulateType;
std::vector< MeasurementRealAccumulateType > sum( measurementVectorSize );
typedef typename SampleType::TotalAbsoluteFrequencyType TotalFrequencyType;
TotalFrequencyType totalFrequency = NumericTraits< TotalFrequencyType >::ZeroValue();
typename SampleType::ConstIterator iter = input->Begin();
const typename SampleType::ConstIterator end = input->End();
for (; iter != end; ++iter )
{
const MeasurementVectorType & measurement = iter.GetMeasurementVector();
const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
totalFrequency += frequency;
for ( unsigned int dim = 0; dim < measurementVectorSize; dim++ )
{
const MeasurementRealType component =
static_cast< MeasurementRealType >( measurement[dim] );
sum[dim] += ( component * static_cast< MeasurementRealType >( frequency ) );
}
}
// compute the mean if the total frequency is different from zero
if ( totalFrequency > itk::Math::eps )
{
for ( unsigned int dim = 0; dim < measurementVectorSize; dim++ )
{
output[dim] = ( sum[dim].GetSum() / static_cast< MeasurementRealType >( totalFrequency ) );
}
}
else
{
itkExceptionMacro("Total frequency was too close to zero: " << totalFrequency );
}
decoratedOutput->Set( output );
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|