File: itkScalarImageToRunLengthFeaturesFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (229 lines) | stat: -rw-r--r-- 9,284 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkScalarImageToRunLengthFeaturesFilter_h
#define itkScalarImageToRunLengthFeaturesFilter_h

#include "itkDataObjectDecorator.h"

#include "itkHistogramToRunLengthFeaturesFilter.h"
#include "itkScalarImageToRunLengthMatrixFilter.h"

namespace itk
{
namespace Statistics
{
/** \class ScalarImageToRunLengthFeaturesFilter
 *  \brief This class computes run length descriptions from an image.
 *
 * By default, run length features are computed for each spatial
 * direction and then averaged afterward, so it is possible to access the
 * standard deviations of the texture features. These values give a clue as
 * to texture anisotropy. However, doing this is much more work, because it
 * involved computing one for each offset given. To compute a single
 * matrix using the first offset, call FastCalculationsOn(). If this is called,
 * then the texture standard deviations will not be computed (and will be set
 * to zero), but texture computation will be much faster.
 *
 * This class is templated over the input image type.
 *
 * Template Parameters:
 * The image type, and the type of histogram frequency container. If you are
 * using a large number of bins per axis, a sparse frequency container may be
 * advisable.  The default is to use a dense frequency container.
 *
 * Inputs and parameters:
 * -# An image
 * -# A mask defining the region over which texture features will be
 *    calculated. (Optional)
 * -# The pixel value that defines the "inside" of the mask. (Optional, defaults
 *    to 1 if a mask is set.)
 * -# The set of features to be calculated. These features are defined
 *    in the HistogramToRunLengthFeaturesFilter class.
 * -# The number of intensity bins. (Optional, defaults to 256.)
 * -# The set of directions (offsets) to average across. (Optional, defaults to
 *    {(-1, 0), (-1, -1), (0, -1), (1, -1)} for 2D images and scales analogously
 *    for ND images.)
 * -# The pixel intensity range over which the features will be calculated.
 *    (Optional, defaults to the full dynamic range of the pixel type.)
 * -# The distance range over which the features will be calculated.
 *    (Optional, defaults to the full dynamic range of double type.)
 *
 * In general, the default parameter values should be sufficient.
 *
 * Outputs:
 * (1) The average value of each feature.
 * (2) The standard deviation in the values of each feature.
 *
 * Print references:
 * M. M. Galloway. Texture analysis using gray level run lengths. Computer
 * Graphics and Image Processing, 4:172-179, 1975.
 *
 * A. Chu, C. M. Sehgal, and J. F. Greenleaf. Use of gray value distribution of
 * run lengths for texture analysis.  Pattern Recognition Letters, 11:415-420,
 * 1990.
 *
 * B. R. Dasarathy and E. B. Holder. Image characterizations based on joint
 * gray-level run-length distributions. Pattern Recognition Letters, 12:490-502,
 * 1991.
 *
 * IJ article: https://hdl.handle.net/1926/1374
 *
 * \sa ScalarImageToRunLengthFeaturesFilter
 * \sa ScalarImageToRunLengthMatrixFilter
 * \sa HistogramToRunLengthFeaturesFilter
 *
 * \author: Nick Tustison
 * \ingroup ITKStatistics
 */

template< typename TImageType,
          typename THistogramFrequencyContainer = DenseFrequencyContainer2 >
class ITK_TEMPLATE_EXPORT ScalarImageToRunLengthFeaturesFilter:public ProcessObject
{
public:
  /** Standard typedefs */
  typedef ScalarImageToRunLengthFeaturesFilter  Self;
  typedef ProcessObject                         Superclass;
  typedef SmartPointer< Self >                  Pointer;
  typedef SmartPointer< const Self >            ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ScalarImageToRunLengthFeaturesFilter, ProcessObject);

  /** standard New() method support */
  itkNewMacro(Self);

  typedef THistogramFrequencyContainer FrequencyContainerType;
  typedef TImageType                   ImageType;
  typedef typename ImageType::Pointer  ImagePointer;

  typedef typename ImageType::PixelType                PixelType;
  typedef typename ImageType::OffsetType               OffsetType;
  typedef VectorContainer< unsigned char, OffsetType > OffsetVector;
  typedef typename OffsetVector::Pointer               OffsetVectorPointer;
  typedef typename OffsetVector::ConstPointer          OffsetVectorConstPointer;

  typedef ScalarImageToRunLengthMatrixFilter<
    ImageType, FrequencyContainerType >               RunLengthMatrixFilterType;

  typedef typename RunLengthMatrixFilterType::HistogramType
  HistogramType;

  typedef HistogramToRunLengthFeaturesFilter< HistogramType >
  RunLengthFeaturesFilterType;

  typedef short                                    RunLengthFeatureName;
  typedef VectorContainer<unsigned char,
    RunLengthFeatureName>                          FeatureNameVector;
  typedef typename FeatureNameVector::Pointer      FeatureNameVectorPointer;
  typedef typename FeatureNameVector::ConstPointer FeatureNameVectorConstPointer;
  typedef VectorContainer< unsigned char, double > FeatureValueVector;
  typedef typename FeatureValueVector::Pointer     FeatureValueVectorPointer;

  /** Smart Pointer type to a DataObject. */
  typedef DataObject::Pointer DataObjectPointer;

  /** Type of DataObjects used for scalar outputs */
  typedef DataObjectDecorator< FeatureValueVector >
  FeatureValueVectorDataObjectType;

  const FeatureValueVectorDataObjectType * GetFeatureMeansOutput() const;

  const FeatureValueVectorDataObjectType * GetFeatureStandardDeviationsOutput()
    const;

  /** Connects the input image for which the features are going to be computed
    */
  using Superclass::SetInput;
  void SetInput(const ImageType *);

  const ImageType * GetInput() const;

  /** Return the feature means and deviations.  */
  itkGetConstReferenceObjectMacro(FeatureMeans, FeatureValueVector);
  itkGetConstReferenceObjectMacro(FeatureStandardDeviations, FeatureValueVector);

  /** Set the desired feature set. Optional, for default value see above. */
  itkSetConstObjectMacro(RequestedFeatures, FeatureNameVector);
  itkGetConstObjectMacro(RequestedFeatures, FeatureNameVector);

  /** Set the  offsets over which the co-occurrence pairs will be computed.
      Optional; for default value see above. */
  itkSetConstObjectMacro(Offsets, OffsetVector);
  itkGetConstObjectMacro(Offsets, OffsetVector);

  /** Set number of histogram bins along each axis.
      Optional; for default value see above. */
  void SetNumberOfBinsPerAxis(unsigned int);

  /** Set the min and max (inclusive) pixel value that will be used for
      feature calculations. Optional; for default value see above. */
  void SetPixelValueMinMax(PixelType min, PixelType max);

  /** Set the min and max (inclusive) pixel value that will be used for
      feature calculations. Optional; for default value see above. */
  void SetDistanceValueMinMax( double min, double max );

  /** Connects the mask image for which the histogram is going to be computed.
      Optional; for default value see above. */
  void SetMaskImage(const ImageType *);

  const ImageType * GetMaskImage() const;

  /** Set the pixel value of the mask that should be considered "inside" the
      object. Optional; for default value see above. */
  void SetInsidePixelValue(PixelType InsidePixelValue);

  itkGetConstMacro(FastCalculations, bool);
  itkSetMacro(FastCalculations, bool);
  itkBooleanMacro(FastCalculations);

protected:
  ScalarImageToRunLengthFeaturesFilter();
  virtual ~ScalarImageToRunLengthFeaturesFilter() ITK_OVERRIDE {}
  virtual void PrintSelf( std::ostream & os, Indent indent ) const ITK_OVERRIDE;

  void FastCompute();

  void FullCompute();

  /** This method causes the filter to generate its output. */
  virtual void GenerateData() ITK_OVERRIDE;

  /** Make a DataObject to be used for output output. */
  typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType) ITK_OVERRIDE;

private:
  typename RunLengthMatrixFilterType::Pointer m_RunLengthMatrixGenerator;

  FeatureValueVectorPointer     m_FeatureMeans;
  FeatureValueVectorPointer     m_FeatureStandardDeviations;
  FeatureNameVectorConstPointer m_RequestedFeatures;
  OffsetVectorConstPointer      m_Offsets;
  bool                          m_FastCalculations;
};
} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageToRunLengthFeaturesFilter.hxx"
#endif

#endif