1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageToRunLengthFeaturesFilter_h
#define itkScalarImageToRunLengthFeaturesFilter_h
#include "itkDataObjectDecorator.h"
#include "itkHistogramToRunLengthFeaturesFilter.h"
#include "itkScalarImageToRunLengthMatrixFilter.h"
namespace itk
{
namespace Statistics
{
/** \class ScalarImageToRunLengthFeaturesFilter
* \brief This class computes run length descriptions from an image.
*
* By default, run length features are computed for each spatial
* direction and then averaged afterward, so it is possible to access the
* standard deviations of the texture features. These values give a clue as
* to texture anisotropy. However, doing this is much more work, because it
* involved computing one for each offset given. To compute a single
* matrix using the first offset, call FastCalculationsOn(). If this is called,
* then the texture standard deviations will not be computed (and will be set
* to zero), but texture computation will be much faster.
*
* This class is templated over the input image type.
*
* Template Parameters:
* The image type, and the type of histogram frequency container. If you are
* using a large number of bins per axis, a sparse frequency container may be
* advisable. The default is to use a dense frequency container.
*
* Inputs and parameters:
* -# An image
* -# A mask defining the region over which texture features will be
* calculated. (Optional)
* -# The pixel value that defines the "inside" of the mask. (Optional, defaults
* to 1 if a mask is set.)
* -# The set of features to be calculated. These features are defined
* in the HistogramToRunLengthFeaturesFilter class.
* -# The number of intensity bins. (Optional, defaults to 256.)
* -# The set of directions (offsets) to average across. (Optional, defaults to
* {(-1, 0), (-1, -1), (0, -1), (1, -1)} for 2D images and scales analogously
* for ND images.)
* -# The pixel intensity range over which the features will be calculated.
* (Optional, defaults to the full dynamic range of the pixel type.)
* -# The distance range over which the features will be calculated.
* (Optional, defaults to the full dynamic range of double type.)
*
* In general, the default parameter values should be sufficient.
*
* Outputs:
* (1) The average value of each feature.
* (2) The standard deviation in the values of each feature.
*
* Print references:
* M. M. Galloway. Texture analysis using gray level run lengths. Computer
* Graphics and Image Processing, 4:172-179, 1975.
*
* A. Chu, C. M. Sehgal, and J. F. Greenleaf. Use of gray value distribution of
* run lengths for texture analysis. Pattern Recognition Letters, 11:415-420,
* 1990.
*
* B. R. Dasarathy and E. B. Holder. Image characterizations based on joint
* gray-level run-length distributions. Pattern Recognition Letters, 12:490-502,
* 1991.
*
* IJ article: https://hdl.handle.net/1926/1374
*
* \sa ScalarImageToRunLengthFeaturesFilter
* \sa ScalarImageToRunLengthMatrixFilter
* \sa HistogramToRunLengthFeaturesFilter
*
* \author: Nick Tustison
* \ingroup ITKStatistics
*/
template< typename TImageType,
typename THistogramFrequencyContainer = DenseFrequencyContainer2 >
class ITK_TEMPLATE_EXPORT ScalarImageToRunLengthFeaturesFilter:public ProcessObject
{
public:
/** Standard typedefs */
typedef ScalarImageToRunLengthFeaturesFilter Self;
typedef ProcessObject Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ScalarImageToRunLengthFeaturesFilter, ProcessObject);
/** standard New() method support */
itkNewMacro(Self);
typedef THistogramFrequencyContainer FrequencyContainerType;
typedef TImageType ImageType;
typedef typename ImageType::Pointer ImagePointer;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::OffsetType OffsetType;
typedef VectorContainer< unsigned char, OffsetType > OffsetVector;
typedef typename OffsetVector::Pointer OffsetVectorPointer;
typedef typename OffsetVector::ConstPointer OffsetVectorConstPointer;
typedef ScalarImageToRunLengthMatrixFilter<
ImageType, FrequencyContainerType > RunLengthMatrixFilterType;
typedef typename RunLengthMatrixFilterType::HistogramType
HistogramType;
typedef HistogramToRunLengthFeaturesFilter< HistogramType >
RunLengthFeaturesFilterType;
typedef short RunLengthFeatureName;
typedef VectorContainer<unsigned char,
RunLengthFeatureName> FeatureNameVector;
typedef typename FeatureNameVector::Pointer FeatureNameVectorPointer;
typedef typename FeatureNameVector::ConstPointer FeatureNameVectorConstPointer;
typedef VectorContainer< unsigned char, double > FeatureValueVector;
typedef typename FeatureValueVector::Pointer FeatureValueVectorPointer;
/** Smart Pointer type to a DataObject. */
typedef DataObject::Pointer DataObjectPointer;
/** Type of DataObjects used for scalar outputs */
typedef DataObjectDecorator< FeatureValueVector >
FeatureValueVectorDataObjectType;
const FeatureValueVectorDataObjectType * GetFeatureMeansOutput() const;
const FeatureValueVectorDataObjectType * GetFeatureStandardDeviationsOutput()
const;
/** Connects the input image for which the features are going to be computed
*/
using Superclass::SetInput;
void SetInput(const ImageType *);
const ImageType * GetInput() const;
/** Return the feature means and deviations. */
itkGetConstReferenceObjectMacro(FeatureMeans, FeatureValueVector);
itkGetConstReferenceObjectMacro(FeatureStandardDeviations, FeatureValueVector);
/** Set the desired feature set. Optional, for default value see above. */
itkSetConstObjectMacro(RequestedFeatures, FeatureNameVector);
itkGetConstObjectMacro(RequestedFeatures, FeatureNameVector);
/** Set the offsets over which the co-occurrence pairs will be computed.
Optional; for default value see above. */
itkSetConstObjectMacro(Offsets, OffsetVector);
itkGetConstObjectMacro(Offsets, OffsetVector);
/** Set number of histogram bins along each axis.
Optional; for default value see above. */
void SetNumberOfBinsPerAxis(unsigned int);
/** Set the min and max (inclusive) pixel value that will be used for
feature calculations. Optional; for default value see above. */
void SetPixelValueMinMax(PixelType min, PixelType max);
/** Set the min and max (inclusive) pixel value that will be used for
feature calculations. Optional; for default value see above. */
void SetDistanceValueMinMax( double min, double max );
/** Connects the mask image for which the histogram is going to be computed.
Optional; for default value see above. */
void SetMaskImage(const ImageType *);
const ImageType * GetMaskImage() const;
/** Set the pixel value of the mask that should be considered "inside" the
object. Optional; for default value see above. */
void SetInsidePixelValue(PixelType InsidePixelValue);
itkGetConstMacro(FastCalculations, bool);
itkSetMacro(FastCalculations, bool);
itkBooleanMacro(FastCalculations);
protected:
ScalarImageToRunLengthFeaturesFilter();
virtual ~ScalarImageToRunLengthFeaturesFilter() ITK_OVERRIDE {}
virtual void PrintSelf( std::ostream & os, Indent indent ) const ITK_OVERRIDE;
void FastCompute();
void FullCompute();
/** This method causes the filter to generate its output. */
virtual void GenerateData() ITK_OVERRIDE;
/** Make a DataObject to be used for output output. */
typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType) ITK_OVERRIDE;
private:
typename RunLengthMatrixFilterType::Pointer m_RunLengthMatrixGenerator;
FeatureValueVectorPointer m_FeatureMeans;
FeatureValueVectorPointer m_FeatureStandardDeviations;
FeatureNameVectorConstPointer m_RequestedFeatures;
OffsetVectorConstPointer m_Offsets;
bool m_FastCalculations;
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageToRunLengthFeaturesFilter.hxx"
#endif
#endif
|