1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageToRunLengthFeaturesFilter_hxx
#define itkScalarImageToRunLengthFeaturesFilter_hxx
#include "itkScalarImageToRunLengthFeaturesFilter.h"
#include "itkNeighborhood.h"
#include "itkMath.h"
namespace itk
{
namespace Statistics
{
template<typename TImage, typename THistogramFrequencyContainer>
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::ScalarImageToRunLengthFeaturesFilter()
{
this->SetNumberOfRequiredInputs( 1 );
this->SetNumberOfRequiredOutputs( 1 );
for( int i = 0; i < 2; ++i )
{
this->ProcessObject::SetNthOutput( i, this->MakeOutput( i ) );
}
this->m_RunLengthMatrixGenerator = RunLengthMatrixFilterType::New();
this->m_FeatureMeans = FeatureValueVector::New();
this->m_FeatureStandardDeviations = FeatureValueVector::New();
// Set the requested features to the default value:
// {Energy, Entropy, InverseDifferenceMoment, Inertia, ClusterShade,
// ClusterProminence}
FeatureNameVectorPointer requestedFeatures = FeatureNameVector::New();
// can't directly set this->m_RequestedFeatures since it is const!
requestedFeatures->push_back( RunLengthFeaturesFilterType::ShortRunEmphasis );
requestedFeatures->push_back( RunLengthFeaturesFilterType::LongRunEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::GreyLevelNonuniformity );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::RunLengthNonuniformity );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::LowGreyLevelRunEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::HighGreyLevelRunEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::ShortRunLowGreyLevelEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::ShortRunHighGreyLevelEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::LongRunLowGreyLevelEmphasis );
requestedFeatures->push_back(
RunLengthFeaturesFilterType::LongRunHighGreyLevelEmphasis );
this->SetRequestedFeatures( requestedFeatures );
// Set the offset directions to their defaults: half of all the possible
// directions 1 pixel away. (The other half is included by symmetry.)
// We use a neighborhood iterator to calculate the appropriate offsets.
typedef Neighborhood<typename ImageType::PixelType,
ImageType::ImageDimension> NeighborhoodType;
NeighborhoodType hood;
hood.SetRadius( 1 );
// select all "previous" neighbors that are face+edge+vertex
// connected to the current pixel. do not include the center pixel.
unsigned int centerIndex = hood.GetCenterNeighborhoodIndex();
OffsetVectorPointer offsets = OffsetVector::New();
for( unsigned int d = 0; d < centerIndex; d++ )
{
OffsetType offset = hood.GetOffset( d );
offsets->push_back( offset );
}
this->SetOffsets( offsets );
this->m_FastCalculations = false;
}
template<typename TImage, typename THistogramFrequencyContainer>
typename
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::DataObjectPointer
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::MakeOutput( DataObjectPointerArraySizeType itkNotUsed(idx) )
{
return FeatureValueVectorDataObjectType::New().GetPointer();
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::GenerateData(void)
{
if ( this->m_FastCalculations )
{
this->FastCompute();
}
else
{
this->FullCompute();
}
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::FullCompute()
{
size_t numOffsets = this->m_Offsets->size();
size_t numFeatures = this->m_RequestedFeatures->size();
double **features;
features = new double *[numOffsets];
for( size_t i = 0; i < numOffsets; i++ )
{
features[i] = new double[numFeatures];
}
// For each offset, calculate each feature
typename OffsetVector::ConstIterator offsetIt;
size_t offsetNum, featureNum;
typedef typename RunLengthFeaturesFilterType::RunLengthFeatureName
InternalRunLengthFeatureName;
for( offsetIt = this->m_Offsets->Begin(), offsetNum = 0;
offsetIt != this->m_Offsets->End(); offsetIt++, offsetNum++ )
{
this->m_RunLengthMatrixGenerator->SetOffset( offsetIt.Value() );
this->m_RunLengthMatrixGenerator->Update();
typename RunLengthFeaturesFilterType::Pointer runLengthMatrixCalculator =
RunLengthFeaturesFilterType::New();
runLengthMatrixCalculator->SetInput(
this->m_RunLengthMatrixGenerator->GetOutput() );
runLengthMatrixCalculator->Update();
typename FeatureNameVector::ConstIterator fnameIt;
for( fnameIt = this->m_RequestedFeatures->Begin(), featureNum = 0;
fnameIt != this->m_RequestedFeatures->End(); fnameIt++, featureNum++ )
{
features[offsetNum][featureNum] = runLengthMatrixCalculator->GetFeature(
( InternalRunLengthFeatureName )fnameIt.Value() );
}
}
// Now get the mean and deviaton of each feature across the offsets.
this->m_FeatureMeans->clear();
this->m_FeatureStandardDeviations->clear();
double *tempFeatureMeans = new double[numFeatures];
double *tempFeatureDevs = new double[numFeatures];
/*Compute incremental mean and SD, a la Knuth, "The Art of Computer
Programming, Volume 2: Seminumerical Algorithms", section 4.2.2.
Compute mean and standard deviation using the recurrence relation:
M(1) = x(1), M(k) = M(k-1) + (x(k) - M(k-1) ) / k
S(1) = 0, S(k) = S(k-1) + (x(k) - M(k-1)) * (x(k) - M(k))
for 2 <= k <= n, then
sigma = std::sqrt(S(n) / n) (or divide by n-1 for sample SD instead of
population SD).
*/
// Set up the initial conditions (k = 1)
for( featureNum = 0; featureNum < numFeatures; featureNum++ )
{
tempFeatureMeans[featureNum] = features[0][featureNum];
tempFeatureDevs[featureNum] = 0;
}
// Run through the recurrence (k = 2 ... N)
for( offsetNum = 1; offsetNum < numOffsets; offsetNum++ )
{
int k = offsetNum + 1;
for( featureNum = 0; featureNum < numFeatures; featureNum++ )
{
double M_k_minus_1 = tempFeatureMeans[featureNum];
double S_k_minus_1 = tempFeatureDevs[featureNum];
double x_k = features[offsetNum][featureNum];
double M_k = M_k_minus_1 + ( x_k - M_k_minus_1 ) / k;
double S_k = S_k_minus_1 + ( x_k - M_k_minus_1 ) * ( x_k - M_k );
tempFeatureMeans[featureNum] = M_k;
tempFeatureDevs[featureNum] = S_k;
}
}
for( featureNum = 0; featureNum < numFeatures; featureNum++ )
{
tempFeatureDevs[featureNum] = std::sqrt( tempFeatureDevs[featureNum] /
numOffsets );
this->m_FeatureMeans->push_back( tempFeatureMeans[featureNum] );
this->m_FeatureStandardDeviations->push_back( tempFeatureDevs[featureNum] );
}
FeatureValueVectorDataObjectType *meanOutputObject =
itkDynamicCastInDebugMode<FeatureValueVectorDataObjectType *>( this->ProcessObject::GetOutput( 0 ) );
meanOutputObject->Set( this->m_FeatureMeans );
FeatureValueVectorDataObjectType *standardDeviationOutputObject =
itkDynamicCastInDebugMode<FeatureValueVectorDataObjectType *>( this->ProcessObject::GetOutput( 1 ) );
standardDeviationOutputObject->Set( this->m_FeatureStandardDeviations );
delete[] tempFeatureMeans;
delete[] tempFeatureDevs;
for( size_t i = 0; i < numOffsets; i++ )
{
delete[] features[i];
}
delete[] features;
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::FastCompute()
{
// Compute the feature for the first offset
typename OffsetVector::ConstIterator offsetIt = this->m_Offsets->Begin();
this->m_RunLengthMatrixGenerator->SetOffset( offsetIt.Value() );
this->m_RunLengthMatrixGenerator->Update();
typename RunLengthFeaturesFilterType::Pointer runLengthMatrixCalculator =
RunLengthFeaturesFilterType::New();
runLengthMatrixCalculator->SetInput(
this->m_RunLengthMatrixGenerator->GetOutput() );
runLengthMatrixCalculator->Update();
typedef typename RunLengthFeaturesFilterType::RunLengthFeatureName
InternalRunLengthFeatureName;
this->m_FeatureMeans->clear();
this->m_FeatureStandardDeviations->clear();
typename FeatureNameVector::ConstIterator fnameIt;
for( fnameIt = this->m_RequestedFeatures->Begin();
fnameIt != this->m_RequestedFeatures->End(); fnameIt++ )
{
this->m_FeatureMeans->push_back( runLengthMatrixCalculator->GetFeature(
( InternalRunLengthFeatureName )fnameIt.Value() ) );
this->m_FeatureStandardDeviations->push_back( 0.0 );
}
FeatureValueVectorDataObjectType *meanOutputObject =
itkDynamicCastInDebugMode<FeatureValueVectorDataObjectType *>( this->ProcessObject::GetOutput( 0 ) );
meanOutputObject->Set( this->m_FeatureMeans );
FeatureValueVectorDataObjectType *standardDeviationOutputObject =
itkDynamicCastInDebugMode<FeatureValueVectorDataObjectType *>( this->ProcessObject::GetOutput( 1 ) );
standardDeviationOutputObject->Set( this->m_FeatureStandardDeviations );
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetInput( const ImageType *image )
{
// Process object is not const-correct so the const_cast is required here
this->ProcessObject::SetNthInput( 0,
const_cast<ImageType *>( image ) );
this->m_RunLengthMatrixGenerator->SetInput( image );
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetNumberOfBinsPerAxis( unsigned int numberOfBins )
{
itkDebugMacro( "setting NumberOfBinsPerAxis to " << numberOfBins );
this->m_RunLengthMatrixGenerator->SetNumberOfBinsPerAxis( numberOfBins );
this->Modified();
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetPixelValueMinMax( PixelType min, PixelType max )
{
itkDebugMacro( "setting Min to " << min << "and Max to " << max );
this->m_RunLengthMatrixGenerator->SetPixelValueMinMax( min, max );
this->Modified();
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetDistanceValueMinMax( double min, double max )
{
itkDebugMacro( "setting Min to " << min << "and Max to " << max );
this->m_RunLengthMatrixGenerator->SetDistanceValueMinMax( min, max );
this->Modified();
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetMaskImage( const ImageType *image )
{
// Process object is not const-correct so the const_cast is required here
this->ProcessObject::SetNthInput( 1,
const_cast< ImageType * >( image ) );
this->m_RunLengthMatrixGenerator->SetMaskImage( image );
}
template<typename TImage, typename THistogramFrequencyContainer>
const TImage *
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::GetInput() const
{
if ( this->GetNumberOfInputs() < 1 )
{
return ITK_NULLPTR;
}
return static_cast<const ImageType *>( this->ProcessObject::GetInput( 0 ) );
}
template<typename TImage, typename THistogramFrequencyContainer>
const typename
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::FeatureValueVectorDataObjectType *
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::GetFeatureMeansOutput() const
{
return itkDynamicCastInDebugMode<const FeatureValueVectorDataObjectType *>
(this->ProcessObject::GetOutput( 0 ) );
}
template<typename TImage, typename THistogramFrequencyContainer>
const typename
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::FeatureValueVectorDataObjectType *
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::GetFeatureStandardDeviationsOutput() const
{
return itkDynamicCastInDebugMode< const FeatureValueVectorDataObjectType * >
( this->ProcessObject::GetOutput( 1 ) );
}
template<typename TImage, typename THistogramFrequencyContainer>
const TImage *
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::GetMaskImage() const
{
if ( this->GetNumberOfInputs() < 2 )
{
return ITK_NULLPTR;
}
return static_cast< const ImageType *>( this->ProcessObject::GetInput( 1 ) );
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::SetInsidePixelValue( PixelType insidePixelValue )
{
itkDebugMacro( "setting InsidePixelValue to " << insidePixelValue );
this->m_RunLengthMatrixGenerator->SetInsidePixelValue( insidePixelValue );
this->Modified();
}
template<typename TImage, typename THistogramFrequencyContainer>
void
ScalarImageToRunLengthFeaturesFilter<TImage, THistogramFrequencyContainer>
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "RequestedFeatures: "
<< this->GetRequestedFeatures() << std::endl;
os << indent << "FeatureStandardDeviations: "
<< this->GetFeatureStandardDeviations() << std::endl;
os << indent << "FastCalculations: "
<< this->GetFastCalculations() << std::endl;
os << indent << "Offsets: " << this->GetOffsets() << std::endl;
os << indent << "FeatureMeans: " << this->GetFeatureMeans() << std::endl;
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|