1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageToListSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageRegionIterator.h"
int itkCovarianceSampleFilterTest(int, char* [] )
{
std::cout << "CovarianceSampleFilter Test \n \n";
// Now generate an image
enum { MeasurementVectorSize = 3 };
typedef float MeasurementType;
typedef itk::FixedArray< MeasurementType, MeasurementVectorSize > MeasurementVectorType;
typedef itk::Image< MeasurementVectorType, 3 > ImageType;
typedef itk::Image< unsigned char, 3 > MaskImageType;
ImageType::Pointer image = ImageType::New();
ImageType::RegionType region;
ImageType::SizeType size;
ImageType::IndexType index;
index.Fill(0);
size.Fill(5);
region.SetIndex(index);
region.SetSize(size);
image->SetBufferedRegion(region);
image->Allocate();
typedef itk::ImageRegionIterator< ImageType > ImageIterator;
ImageIterator iter(image, region);
unsigned int count = 0;
MeasurementVectorType temp;
temp.Fill(0);
// fill the image
while (!iter.IsAtEnd())
{
temp[0] = count;
iter.Set(temp);
++iter;
++count;
}
// creates an ImageToListSampleAdaptor object
typedef itk::Statistics::ImageToListSampleFilter< ImageType, MaskImageType > ImageToListSampleFilterType;
ImageToListSampleFilterType::Pointer sampleGeneratingFilter = ImageToListSampleFilterType::New();
sampleGeneratingFilter->SetInput( image );
try
{
sampleGeneratingFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr<< excp << std::endl;
return EXIT_FAILURE;
}
typedef ImageToListSampleFilterType::ListSampleType ListSampleType;
typedef itk::Statistics::CovarianceSampleFilter< ListSampleType > CovarianceSampleFilterType;
CovarianceSampleFilterType::Pointer covarianceFilter = CovarianceSampleFilterType::New();
std::cout << "GetNameOfClass() = " << covarianceFilter->GetNameOfClass() << std::endl;
//Invoke update before adding an input. An exception should be
try
{
covarianceFilter->Update();
std::cerr << "Exception should have been thrown since \
Update() is invoked without setting an input " << std::endl;
return EXIT_FAILURE;
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
}
covarianceFilter->ResetPipeline();
if ( covarianceFilter->GetInput() != ITK_NULLPTR )
{
std::cerr << "GetInput() should return ITK_NULLPTR if the input \
has not been set" << std::endl;
return EXIT_FAILURE;
}
covarianceFilter->SetInput( sampleGeneratingFilter->GetOutput() );
try
{
covarianceFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr<< excp << std::endl;
return EXIT_FAILURE;
}
covarianceFilter->Print( std::cout );
const double epsilon = 1e-6;
// CHECK THE RESULTS
const CovarianceSampleFilterType::MeasurementVectorDecoratedType * meanDecorator =
covarianceFilter->GetMeanOutput();
CovarianceSampleFilterType::MeasurementVectorRealType mean = meanDecorator->Get();
std::cout << "Mean: " << mean << std::endl;
CovarianceSampleFilterType::MeasurementVectorRealType mean2 = covarianceFilter->GetMean();
if ( ( std::fabs( mean[0] - mean2[0]) > epsilon ) ||
( std::fabs( mean[1] - mean2[1]) > epsilon) ||
( std::fabs( mean[2] - mean2[2]) > epsilon) )
{
std::cerr << "Mean parameter value retrieved using GetMean() and the decorator\
are not the same:: " << mean << "," << mean2 << std::endl;
return EXIT_FAILURE;
}
const CovarianceSampleFilterType::MatrixDecoratedType * decorator = covarianceFilter->GetCovarianceMatrixOutput();
CovarianceSampleFilterType::MatrixType covarianceMatrix = decorator->Get();
std::cout << "Covariance matrix: " << covarianceMatrix << std::endl;
typedef itk::Statistics::MeanSampleFilter< ListSampleType > MeanSampleFilterType;
MeanSampleFilterType::Pointer meanFilter = MeanSampleFilterType::New();
meanFilter->SetInput( sampleGeneratingFilter->GetOutput());
try
{
meanFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
}
MeanSampleFilterType::MeasurementVectorRealType meanCalculatedUsingMeanSampleFilter = meanFilter->GetMean();
if ( ( std::fabs( meanCalculatedUsingMeanSampleFilter[0] - mean[0]) > epsilon ) ||
( std::fabs( meanCalculatedUsingMeanSampleFilter[1] - mean[1]) > epsilon) ||
( std::fabs( meanCalculatedUsingMeanSampleFilter[2] - mean[2]) > epsilon) )
{
std::cerr << "Mean calculated using the MeanSampleFilter is different from\
the one calculated using the covariance filter " << std::endl;
std::cerr << "Mean computed with covariance filter = " << mean << std::endl;
std::cerr << "Mean computed with mean filter = " << meanCalculatedUsingMeanSampleFilter << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|