File: itkCovarianceSampleFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (177 lines) | stat: -rw-r--r-- 5,983 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageToListSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageRegionIterator.h"

int itkCovarianceSampleFilterTest(int, char* [] )
{
  std::cout << "CovarianceSampleFilter Test \n \n";

  // Now generate an image
  enum { MeasurementVectorSize = 3 };
  typedef float MeasurementType;

  typedef itk::FixedArray< MeasurementType, MeasurementVectorSize > MeasurementVectorType;
  typedef itk::Image< MeasurementVectorType, 3 >                    ImageType;
  typedef itk::Image< unsigned char, 3 >                            MaskImageType;

  ImageType::Pointer image = ImageType::New();
  ImageType::RegionType region;
  ImageType::SizeType size;
  ImageType::IndexType index;
  index.Fill(0);
  size.Fill(5);
  region.SetIndex(index);
  region.SetSize(size);


  image->SetBufferedRegion(region);
  image->Allocate();

  typedef itk::ImageRegionIterator< ImageType > ImageIterator;
  ImageIterator iter(image, region);

  unsigned int count = 0;
  MeasurementVectorType temp;
  temp.Fill(0);

  // fill the image
  while (!iter.IsAtEnd())
    {
    temp[0] = count;
    iter.Set(temp);
    ++iter;
    ++count;
    }

  // creates an ImageToListSampleAdaptor object
  typedef  itk::Statistics::ImageToListSampleFilter< ImageType, MaskImageType > ImageToListSampleFilterType;

  ImageToListSampleFilterType::Pointer sampleGeneratingFilter = ImageToListSampleFilterType::New();

  sampleGeneratingFilter->SetInput( image );

  try
    {
    sampleGeneratingFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr<< excp << std::endl;
    return EXIT_FAILURE;
    }

  typedef ImageToListSampleFilterType::ListSampleType                 ListSampleType;
  typedef itk::Statistics::CovarianceSampleFilter< ListSampleType >   CovarianceSampleFilterType;

  CovarianceSampleFilterType::Pointer covarianceFilter = CovarianceSampleFilterType::New();

  std::cout << "GetNameOfClass() = " << covarianceFilter->GetNameOfClass() << std::endl;

  //Invoke update before adding an input. An exception should be
  try
    {
    covarianceFilter->Update();
    std::cerr << "Exception should have been thrown since \
                 Update() is invoked without setting an input " << std::endl;
    return EXIT_FAILURE;
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  covarianceFilter->ResetPipeline();

  if ( covarianceFilter->GetInput() != ITK_NULLPTR )
    {
    std::cerr << "GetInput() should return ITK_NULLPTR if the input \
                     has not been set" << std::endl;
    return EXIT_FAILURE;
    }

  covarianceFilter->SetInput( sampleGeneratingFilter->GetOutput() );
  try
    {
    covarianceFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr<< excp << std::endl;
    return EXIT_FAILURE;
    }

  covarianceFilter->Print( std::cout );

  const double   epsilon = 1e-6;

  // CHECK THE RESULTS
  const CovarianceSampleFilterType::MeasurementVectorDecoratedType * meanDecorator =
                                                covarianceFilter->GetMeanOutput();

  CovarianceSampleFilterType::MeasurementVectorRealType    mean  = meanDecorator->Get();
  std::cout << "Mean:   " << mean << std::endl;
  CovarianceSampleFilterType::MeasurementVectorRealType    mean2 = covarianceFilter->GetMean();

  if ( ( std::fabs( mean[0] - mean2[0]) > epsilon )  ||
       ( std::fabs( mean[1] - mean2[1]) > epsilon)  ||
       ( std::fabs( mean[2] - mean2[2]) > epsilon) )
    {
    std::cerr << "Mean parameter value retrieved using GetMean() and the decorator\
                  are not the same:: " <<  mean << "," << mean2 << std::endl;
    return EXIT_FAILURE;
    }


  const CovarianceSampleFilterType::MatrixDecoratedType * decorator = covarianceFilter->GetCovarianceMatrixOutput();
  CovarianceSampleFilterType::MatrixType    covarianceMatrix  = decorator->Get();

  std::cout << "Covariance matrix:   " << covarianceMatrix << std::endl;


  typedef itk::Statistics::MeanSampleFilter< ListSampleType > MeanSampleFilterType;
  MeanSampleFilterType::Pointer meanFilter = MeanSampleFilterType::New();
  meanFilter->SetInput( sampleGeneratingFilter->GetOutput());

  try
    {
    meanFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  MeanSampleFilterType::MeasurementVectorRealType meanCalculatedUsingMeanSampleFilter = meanFilter->GetMean();

  if ( ( std::fabs( meanCalculatedUsingMeanSampleFilter[0] - mean[0]) > epsilon )  ||
       ( std::fabs( meanCalculatedUsingMeanSampleFilter[1] - mean[1]) > epsilon)  ||
       ( std::fabs( meanCalculatedUsingMeanSampleFilter[2] - mean[2]) > epsilon) )
    {
    std::cerr << "Mean calculated using the MeanSampleFilter is different from\
                 the one calculated using the covariance filter " << std::endl;
    std::cerr << "Mean computed with covariance filter = " << mean << std::endl;
    std::cerr << "Mean computed with mean filter = " << meanCalculatedUsingMeanSampleFilter << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}