File: itkCovarianceSampleFilterTest3.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (209 lines) | stat: -rw-r--r-- 6,493 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkCovarianceSampleFilter.h"
#include "itkHistogram.h"
#include "itkMahalanobisDistanceMetric.h"

namespace itk {
namespace Statistics {
template < typename TSample >
class MyCovarianceSampleFilter : public CovarianceSampleFilter< TSample >
{
public:
  typedef MyCovarianceSampleFilter                Self;
  typedef CovarianceSampleFilter<TSample>         Superclass;
  typedef SmartPointer<Self>                      Pointer;
  typedef SmartPointer<const Self>                ConstPointer;
  typedef TSample                                 SampleType;

  itkNewMacro(Self);

  //method to invoke MakeOutput with index value different
  //from one or zero. This is to check if an exception will be
  // thrown

  void CreateInvalidOutput()
    {
    unsigned int index=3;
    Superclass::MakeOutput( index );
    }
  unsigned int GetMeasurementVectorSize() const
    {
    return this->Superclass::GetMeasurementVectorSize();
    }

private:
  MyCovarianceSampleFilter() {}
  ~MyCovarianceSampleFilter() ITK_OVERRIDE {}
};
}
}

int itkCovarianceSampleFilterTest3(int, char* [] )
{
  std::cout << "CovarianceSampleFilter test \n \n";

  typedef double                      MeasurementType;
  const unsigned int                  MeasurementVectorSize = 3;

  typedef itk::Statistics::Histogram< MeasurementType,
          itk::Statistics::DenseFrequencyContainer2 > HistogramType;

  typedef HistogramType    SampleType;

  HistogramType::Pointer histogram = HistogramType::New();

  HistogramType::SizeType                 size( MeasurementVectorSize );
  HistogramType::MeasurementVectorType    lowerBound( MeasurementVectorSize );
  HistogramType::MeasurementVectorType    upperBound( MeasurementVectorSize );

  size.Fill(50);
  lowerBound.Fill(-350);
  upperBound.Fill(450);

  histogram->SetMeasurementVectorSize( MeasurementVectorSize );
  histogram->Initialize( size, lowerBound, upperBound );
  histogram->SetToZero();

  typedef itk::Statistics::MahalanobisDistanceMetric<
    HistogramType::MeasurementVectorType >                    MembershipFunctionType;

  MembershipFunctionType::Pointer memberFunction = MembershipFunctionType::New();


  typedef MembershipFunctionType::MeanVectorType            MeanVectorType;
  typedef MembershipFunctionType::CovarianceMatrixType      CovarianceMatrixType;

  MeanVectorType mean( MeasurementVectorSize );
  CovarianceMatrixType covariance( MeasurementVectorSize, MeasurementVectorSize );

  mean[0] = 50;
  mean[1] = 52;
  mean[2] = 51;

  covariance.set_identity();
  covariance[0][0] = 10000.0;
  covariance[1][1] = 8000.0;
  covariance[2][2] = 6000.0;


  for( unsigned int i=0; i < MeasurementVectorSize; i++ )
    {
    for( unsigned int j=i; j < MeasurementVectorSize; j++ )
      {
      covariance[j][i] = covariance[i][j];
      }
    }

  std::cout << "Initial Mean = " << std::endl << mean << std::endl;
  std::cout << "Initial Covariance = " << std::endl << covariance << std::endl;

  memberFunction->SetMean( mean );
  memberFunction->SetCovariance( covariance );

  HistogramType::Iterator itr = histogram->Begin();
  HistogramType::Iterator end = histogram->End();

  typedef HistogramType::AbsoluteFrequencyType  AbsoluteFrequencyType;

  while( itr != end )
    {
    const double MahalanobisDistance =
      memberFunction->Evaluate( itr.GetMeasurementVector() );

    const double MahalanobisDistance2 = MahalanobisDistance * MahalanobisDistance;

    AbsoluteFrequencyType frequency = (AbsoluteFrequencyType) std::floor( 1e5 * std::exp( -0.5 * MahalanobisDistance2 ) );

    itr.SetFrequency( frequency );
    ++itr;
    }


  typedef itk::Statistics::MyCovarianceSampleFilter< SampleType > FilterType;

  FilterType::Pointer filter = FilterType::New();


  //test if exception is thrown if a derived class tries to create
  // an invalid output
  try
    {
    filter->CreateInvalidOutput();
    std::cerr << "Exception should have been thrown: " << std::endl;
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Expected Exception caught: " << excp << std::endl;
    }

  filter->ResetPipeline();
  filter->SetInput( histogram );

  try
    {
    filter->Update();
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  const FilterType::MatrixDecoratedType * decorator = filter->GetCovarianceMatrixOutput();
  FilterType::MatrixType    covarianceOutput  = decorator->Get();

  FilterType::MeasurementVectorRealType meanOutput = filter->GetMean();

  std::cout << "Mean: "              << meanOutput << std::endl;
  std::cout << "Covariance Matrix: " << covarianceOutput << std::endl;

  std::cout << "GetMeasurementVectorSize = " << filter->GetMeasurementVectorSize() << std::endl;

  double epsilon = 1;

  for ( unsigned int i = 0; i < MeasurementVectorSize; i++ )
    {
    if ( std::fabs( meanOutput[i] - mean[i] ) > epsilon )
      {
      std::cerr << "The computed mean value is incorrect" << std::endl;
      std::cerr << "computed mean = " << meanOutput << std::endl;
      std::cerr << "expected mean = " << mean << std::endl;
      return EXIT_FAILURE;
      }
    }

  epsilon = 35;

  for ( unsigned int i = 0; i < MeasurementVectorSize; i++ )
    {
    for ( unsigned int j = 0; j < MeasurementVectorSize; j++ )
      {
      if ( std::fabs( covariance[i][j] - covarianceOutput[i][j] ) > epsilon )
        {
        std::cerr << "Computed covariance matrix value is incorrrect:"
                  << i << "," << j << "=" << covariance[i][j]
                  << "," << covarianceOutput[i][j] << std::endl;
        return EXIT_FAILURE;
        }
      }
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}