1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkKalmanLinearEstimator.h"
#include <iostream>
/**
* This program test one instantiation of the itk::KalmanLinearEstimator class
*
* The test is done by providing a Linear Equation in 6D for which the
* coefficients are known. A population of samples is generated and
* passed to the KalmanLinearEstimator.
*
*/
int itkKalmanLinearEstimatorTest(int, char* [] )
{
typedef itk::KalmanLinearEstimator<double,6> KalmanFilterType;
typedef KalmanFilterType::VectorType VectorType;
typedef KalmanFilterType::ValueType ValueType;
KalmanFilterType filter;
filter.ClearEstimation();
filter.SetVariance(1.0);
ValueType measure;
VectorType predictor;
VectorType planeEquation;
planeEquation(0) = 9.0;
planeEquation(1) = 6.0;
planeEquation(2) = 7.0;
planeEquation(3) = 9.0;
planeEquation(4) = 4.0;
planeEquation(5) = 6.0;
const unsigned int N = 10;
predictor(5) = 1.0;
for(unsigned int ax=0; ax < N; ax++)
{
predictor(0) = ax;
for(unsigned int bx=0; bx < N; bx++)
{
predictor(1) = bx;
for(unsigned int cx=0; cx < N; cx++)
{
predictor(2) = cx;
for(unsigned int dx=0; dx < N; dx++)
{
predictor(3) = dx;
for(unsigned int ex=0; ex < N; ex++)
{
predictor(4) = ex;
measure = dot_product( predictor, planeEquation );
filter.UpdateWithNewMeasure(measure,predictor);
}
}
}
}
}
VectorType estimation = filter.GetEstimator();
std::cout << std::endl << "The Right answer should be : " << std::endl;
std::cout << planeEquation;
std::cout << std::endl << "The Estimation is : " << std::endl;
std::cout << estimation;
VectorType error = estimation - planeEquation;
ValueType errorMagnitude = dot_product( error, error );
std::cout << std::endl << "Errors : " << std::endl;
std::cout << error;
std::cout << std::endl << "Error Magnitude : " << std::endl;
std::cout << errorMagnitude;
std::cout << std::endl << "Variance : " << std::endl;
std::cout << filter.GetVariance();
std::cout << std::endl << std::endl;
bool pass = true;
const float tolerance = 1e-4;
if( errorMagnitude > tolerance )
{
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|