File: itkKdTreeTest1.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (242 lines) | stat: -rw-r--r-- 7,851 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMath.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkListSample.h"
#include "itkKdTreeGenerator.h"
#include <fstream>

int itkKdTreeTest1(int argc , char * argv [] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing parameters" << std::endl;
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " numberOfDataPoints numberOfTestPoints bucketSize [graphvizDotOutputFile]" << std::endl;
    return EXIT_FAILURE;
    }

  // Random number generator
  typedef itk::Statistics::MersenneTwisterRandomVariateGenerator NumberGeneratorType;

  NumberGeneratorType::Pointer randomNumberGenerator = NumberGeneratorType::GetInstance();
  randomNumberGenerator->Initialize();

  typedef itk::Array< double > MeasurementVectorType;
  typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;

  const SampleType::MeasurementVectorSizeType measurementVectorSize = 2;

  SampleType::Pointer sample = SampleType::New();
  sample->SetMeasurementVectorSize( measurementVectorSize );

  //
  // Generate a sample of random points
  //
  const unsigned int numberOfDataPoints = atoi( argv[1] );
  MeasurementVectorType mv( measurementVectorSize );
  for (unsigned int i = 0; i < numberOfDataPoints; ++i )
    {
    mv[0] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
    mv[1] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
    sample->PushBack( mv );
    std::cout << "Add measurement vector: " << mv << std::endl;
    }

  typedef itk::Statistics::KdTreeGenerator< SampleType > TreeGeneratorType;
  TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();

  const unsigned int bucketSize = atoi( argv[3] );

  treeGenerator->SetSample( sample );
  treeGenerator->SetBucketSize( bucketSize );
  treeGenerator->Update();

  typedef TreeGeneratorType::KdTreeType TreeType;

  TreeType::Pointer tree = treeGenerator->GetOutput();

  MeasurementVectorType queryPoint( measurementVectorSize );

  unsigned int numberOfNeighbors = 1;
  TreeType::InstanceIdentifierVectorType neighbors;

  MeasurementVectorType result( measurementVectorSize );
  MeasurementVectorType test_point( measurementVectorSize );
  MeasurementVectorType min_point( measurementVectorSize );

  unsigned int numberOfFailedPoints1 = 0;

  const unsigned int numberOfTestPoints = atoi( argv[2] );

  //
  //  Check that for every point in the sample, its closest point is itself.
  //
  typedef itk::Statistics::EuclideanDistanceMetric< MeasurementVectorType > DistanceMetricType;

  typedef DistanceMetricType::OriginType OriginType;

  DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();

  OriginType origin( measurementVectorSize );
  for( unsigned int k = 0; k < sample->Size(); k++ )
    {

    queryPoint = sample->GetMeasurementVector(k);

    for ( unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i )
      {
      origin[i] = queryPoint[i];
      }

    distanceMetric->SetOrigin( origin );

    // First, get distance from the search API
    std::vector<double> searchDistance;
    tree->Search( queryPoint, numberOfNeighbors, neighbors, searchDistance );

    // We can also get distance from the distance metric
    tree->Search( queryPoint, numberOfNeighbors, neighbors );

    for ( unsigned int i = 0; i < numberOfNeighbors; ++i )
      {
      const double distanceFromMetric =
        distanceMetric->Evaluate( tree->GetMeasurementVector( neighbors[i] ));

      if( distanceFromMetric > itk::Math::eps ||
          searchDistance[i] > itk::Math::eps ||
          itk::Math::NotAlmostEquals( distanceFromMetric, searchDistance[i]  ) )
        {
        std::cerr << "kd-tree knn search result:" << std::endl
                  << "query point = [" << queryPoint << "]" << std::endl
                  << "k = " << numberOfNeighbors << std::endl;
        std::cerr << "measurement vector : distance_by_distMetric : distance_by_tree" << std::endl;
        std::cerr << "[" << tree->GetMeasurementVector( neighbors[i] )
                  << "] : "
                  << distanceFromMetric
                  << " : "
                  << searchDistance[i] << std::endl;
        numberOfFailedPoints1++;
        }
      }
    }

  unsigned int numberOfFailedPoints2 = 0;

  //
  // Generate a second sample of random points
  // and use them to query the tree
  //
  for (unsigned int j = 0; j < numberOfTestPoints; ++j )
    {

    double min_dist = itk::NumericTraits< double >::max();

    queryPoint[0] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
    queryPoint[1] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );

    tree->Search( queryPoint, numberOfNeighbors, neighbors );

    //
    // The first neighbor should be the closest point.
    //
    result = tree->GetMeasurementVector( neighbors[0] );

    //
    // Compute the distance to the "presumed" nearest neighbor
    //
    double result_dist = std::sqrt(
          (result[0] - queryPoint[0]) *
          (result[0] - queryPoint[0]) +
          (result[1] - queryPoint[1]) *
          (result[1] - queryPoint[1])
          );

    //
    // Compute the distance to all other points, to verify
    // whether the first neighbor was the closest one or not.
    //
    for( unsigned int i = 0; i < numberOfDataPoints; ++i )
      {
      test_point = tree->GetMeasurementVector( i );

      const double dist = std::sqrt(
          (test_point[0] - queryPoint[0]) *
          (test_point[0] - queryPoint[0]) +
          (test_point[1] - queryPoint[1]) *
          (test_point[1] - queryPoint[1])
          );

      if( dist < min_dist )
        {
        min_dist = dist;
        min_point = test_point;
        }
      }

    if( std::fabs(min_dist - result_dist) > 10.0*itk::NumericTraits<double>::epsilon()*min_dist )
      {
      std::cerr << "Problem found " << std::endl;
      std::cerr << "Query point " << queryPoint << std::endl;
      std::cerr << "Reported closest point " << result
                << " distance " << result_dist << std::endl;
      std::cerr << "Actual   closest point " << min_point
                << " distance " << min_dist << std::endl;
      std::cerr << std::endl;
      std::cerr << "Test FAILED." << std::endl;
      numberOfFailedPoints2++;
      }

    }


  if( argc > 4 )
    {
    //
    // Plot out the tree structure to the console in the format used by Graphviz dot
    //
    std::ofstream plotFile;
    plotFile.open( argv[4] );
    tree->PlotTree( plotFile );
    plotFile.close();
    }


  if( numberOfFailedPoints1 )
    {
    std::cerr << numberOfFailedPoints1 << " out of " << sample->Size();
    std::cerr << " points failed to find themselves as closest-point" << std::endl;
    }

  if( numberOfFailedPoints2 )
    {
    std::cerr << numberOfFailedPoints2 << " out of " << numberOfTestPoints;
    std::cerr << " points failed to find the correct closest point." << std::endl;
    }


  if( numberOfFailedPoints1 || numberOfFailedPoints2 )
    {
    return EXIT_FAILURE;
    }


  std::cout << "Test PASSED." << std::endl;
  return EXIT_SUCCESS;
}