1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkListSample.h"
#include "itkKdTreeGenerator.h"
#include <fstream>
int itkKdTreeTestSamplePoints(int , char *[] )
{
typedef itk::Array< double > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
const SampleType::MeasurementVectorSizeType measurementVectorSize = 2;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( measurementVectorSize );
const unsigned int numberOfDataPoints = 5;
MeasurementVectorType mv( measurementVectorSize );
mv[0] = 0.0342;
mv[1] = 0.5175;
sample->PushBack( mv );
MeasurementVectorType mv2( measurementVectorSize );
mv2[0] = 0.9650;
mv2[1] = -0.9379;
sample->PushBack( mv2 );
MeasurementVectorType mv3( measurementVectorSize );
mv3[0] = -0.0471;
mv3[1] = 0.8177;
sample->PushBack( mv3 );
MeasurementVectorType mv4( measurementVectorSize );
mv4[0] = 0.4737;
mv4[1] = -1.0447;
sample->PushBack( mv4 );
MeasurementVectorType mv5( measurementVectorSize );
mv5[0] = -0.6307;
mv5[1] = -2.7600;
sample->PushBack( mv5 );
typedef itk::Statistics::KdTreeGenerator< SampleType > TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
const unsigned int bucketSize = 1;
treeGenerator->SetSample( sample );
treeGenerator->SetBucketSize( bucketSize );
treeGenerator->Update();
typedef TreeGeneratorType::KdTreeType TreeType;
TreeType::Pointer tree = treeGenerator->GetOutput();
MeasurementVectorType queryPoint( measurementVectorSize );
unsigned int numberOfNeighbors = 1;
TreeType::InstanceIdentifierVectorType neighbors;
MeasurementVectorType result( measurementVectorSize );
MeasurementVectorType test_point( measurementVectorSize );
MeasurementVectorType min_point( measurementVectorSize );
//
// Check that for every point in the sample, its closest point is itself.
//
typedef itk::Statistics::EuclideanDistanceMetric< MeasurementVectorType > DistanceMetricType;
typedef DistanceMetricType::OriginType OriginType;
DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();
OriginType origin( measurementVectorSize );
for( unsigned int k = 0; k < sample->Size(); k++ )
{
queryPoint = sample->GetMeasurementVector(k);
for ( unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i )
{
origin[i] = queryPoint[i];
}
distanceMetric->SetOrigin( origin );
tree->Search( queryPoint, numberOfNeighbors, neighbors );
for ( unsigned int i = 0; i < numberOfNeighbors; ++i )
{
const double distance =
distanceMetric->Evaluate( tree->GetMeasurementVector( neighbors[i] ));
if( distance > itk::Math::eps )
{
std::cerr << "kd-tree knn search result:" << std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;
std::cerr << "measurement vector : distance" << std::endl;
std::cerr << "[" << tree->GetMeasurementVector( neighbors[i] )
<< "] : "
<< distance << std::endl;
}
}
}
double min_dist = itk::NumericTraits< double >::max();
/*
queryPoint[0] = 1.16651;
queryPoint[1] = 0.16395;
*/
/*
queryPoint[0] = 1.0;
queryPoint[1] = 0.12;
*/
queryPoint[0] = 1.0;
queryPoint[1] = 0.1;
tree->Search( queryPoint, numberOfNeighbors, neighbors );
//
// The first neighbor should be the closest point.
//
result = tree->GetMeasurementVector( neighbors[0] );
//
// Compute the distance to the "presumed" nearest neighbor
//
double result_dist = std::sqrt(
(result[0] - queryPoint[0]) *
(result[0] - queryPoint[0]) +
(result[1] - queryPoint[1]) *
(result[1] - queryPoint[1])
);
//
// Compute the distance to all other points, to verify
// whether the first neighbor was the closest one or not.
//
for( unsigned int i = 0; i < numberOfDataPoints; ++i )
{
test_point = tree->GetMeasurementVector( i );
std::cout << "Compute distance with: " << test_point;
const double dist = std::sqrt(
(test_point[0] - queryPoint[0]) *
(test_point[0] - queryPoint[0]) +
(test_point[1] - queryPoint[1]) *
(test_point[1] - queryPoint[1])
);
std::cout << "\t" << dist << std::endl;
if( dist < min_dist )
{
min_dist = dist;
min_point = test_point;
}
}
if( min_dist < result_dist )
{
std::cerr << "Problem found " << std::endl;
std::cerr << "Query point " << queryPoint << std::endl;
std::cerr << "Reported closest point " << result
<< " distance " << result_dist << std::endl;
std::cerr << "Actual closest point " << min_point
<< " distance " << min_dist << std::endl;
std::cerr << std::endl;
std::cerr << "Test FAILED." << std::endl;
}
//
// Plot out the tree structure to the console in the format used by Graphviz dot
//
std::ofstream plotFile;
plotFile.open( "plot.dot" );
tree->PlotTree( plotFile );
plotFile.close();
return EXIT_SUCCESS;
}
|