File: itkMahalanobisDistanceMetricTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (258 lines) | stat: -rw-r--r-- 9,613 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMahalanobisDistanceMetric.h"

int itkMahalanobisDistanceMetricTest(int, char* [] )
{
  const unsigned int MeasurementVectorSize = 3;

  typedef itk::Array< float  >  MeasurementVectorType;

  typedef itk::Statistics::MahalanobisDistanceMetric< MeasurementVectorType >   DistanceMetricType;

  DistanceMetricType::Pointer distance = DistanceMetricType::New();

  std::cout << distance->GetNameOfClass() << std::endl;

  distance->Print(std::cout);

  distance->SetMeasurementVectorSize( MeasurementVectorSize );

  if( distance->GetMeasurementVectorSize() != MeasurementVectorSize )
    {
    std::cerr << "GetMeasurementVectorSize() Failed !" << std::endl;
    return EXIT_FAILURE;
    }

  //Test if the distance computed is correct
  DistanceMetricType::OriginType origin;
  ::itk::NumericTraits<DistanceMetricType::OriginType>::SetLength( origin, 3);
  origin[0] = 1.5;
  origin[1] = 2.3;
  origin[2] = 1.0;
  distance->SetMean( origin );

  //double value comparison tolerance
  const double tolerance = 0.001;
  if( std::fabs(distance->GetMean()[0] - origin[0]) > tolerance ||
      std::fabs(distance->GetMean()[1] - origin[1]) > tolerance ||
      std::fabs(distance->GetMean()[2] - origin[2]) > tolerance )
    {
    std::cerr << " Set/Get Origin error " << std::endl;
    return EXIT_FAILURE;
    }

  MeasurementVectorType measurement;
  ::itk::NumericTraits<MeasurementVectorType>::SetLength( measurement, 3);
  measurement[0] = 2.5;
  measurement[1] = 3.3;
  measurement[2] = 4.0;

  double trueValue = 3.31662;
  double distanceComputed = distance->Evaluate( measurement );

  if( std::fabs( distanceComputed - trueValue) > tolerance )
    {
    std::cerr << "Distance computed not correct: " << "truevalue= " << trueValue
              << "ComputedValue=" << distanceComputed << std::endl;
    return EXIT_FAILURE;
    }

  //Test if we get the same result with identity covariance matrix set
  DistanceMetricType::CovarianceMatrixType   covarianceMatrix;
  covarianceMatrix.set_size( MeasurementVectorSize, MeasurementVectorSize );
  covarianceMatrix.set_identity();
  distance->SetCovariance( covarianceMatrix );

  if( distance->GetCovariance() != covarianceMatrix )
    {
    std::cerr << "Get/SetCovariance method error" << std::endl;
    return EXIT_FAILURE;
    }

  double epsilon   = 1e-200;
  double doubleMax = 1e+25;

  distance->SetEpsilon( epsilon );
  distance->SetDoubleMax( doubleMax );

  //Test Set/Get Epsilon method
  if( std::fabs( distance->GetEpsilon() - epsilon ) > tolerance )
    {
    std::cerr << "Get/SetEpsilon method error" << std::endl;
    return EXIT_FAILURE;
    }

  //Test Set/Get DoubleMax method
  if( std::fabs( distance->GetDoubleMax() - doubleMax ) > tolerance )
    {
    std::cerr << "Get/SetDoubleMax method error" << std::endl;
    return EXIT_FAILURE;
    }

  if( std::fabs( distanceComputed - trueValue) > tolerance )
    {
    std::cerr << "Distance computed not correct: " << "truevalue= " << trueValue
              << "ComputedValue=" << distanceComputed << std::endl;
    return EXIT_FAILURE;
    }


  //Test if an exception is thrown if a covariance matrix is set with different
  //size
  DistanceMetricType::CovarianceMatrixType   covarianceMatrix2;
  DistanceMetricType::MeasurementVectorSizeType  measurementSize2 = 4;
  covarianceMatrix2.set_size( measurementSize2, measurementSize2 );

  try
    {
    distance->SetCovariance( covarianceMatrix2 );
    std::cerr << "Exception should have been thrown: " << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excpt )
    {
    std::cerr << "Exception caught: " << excpt << std::endl;
    }

  //Set a covariance matrix and check if the computed inverse matrix is
  //correct
  //
  DistanceMetricType::CovarianceMatrixType   covarianceMatrix3;
  covarianceMatrix3.set_size( MeasurementVectorSize, MeasurementVectorSize );
  covarianceMatrix3[0][0] = 2.0;
  covarianceMatrix3[0][1] = 1.4;
  covarianceMatrix3[0][2] = 5.0;

  covarianceMatrix3[1][0] = 3.0;
  covarianceMatrix3[1][1] = 2.0;
  covarianceMatrix3[1][2] = 5.4;

  covarianceMatrix3[2][0] = 3.2;
  covarianceMatrix3[2][1] = 1.4;
  covarianceMatrix3[2][2] = 7.4;

  distance->SetCovariance( covarianceMatrix3 );

  //establish the true inverse covariance matrix
  DistanceMetricType::CovarianceMatrixType   trueInverseCovarianceMatrix;
  trueInverseCovarianceMatrix.set_size( MeasurementVectorSize, MeasurementVectorSize );

  trueInverseCovarianceMatrix[0][0] = -2.124;
  trueInverseCovarianceMatrix[0][1] = 0.986;
  trueInverseCovarianceMatrix[0][2] = 0.716;

  trueInverseCovarianceMatrix[1][0] = 1.444;
  trueInverseCovarianceMatrix[1][1] = 0.352;
  trueInverseCovarianceMatrix[1][2] = -1.232;

  trueInverseCovarianceMatrix[2][0] = 0.646;
  trueInverseCovarianceMatrix[2][1] = -0.493;
  trueInverseCovarianceMatrix[2][2] = 0.059;

  // Get the computed inverse covariance matrix
  DistanceMetricType::CovarianceMatrixType   computedInverseCovarianceMatrix;
  computedInverseCovarianceMatrix = distance->GetInverseCovariance();

  if( std::fabs( trueInverseCovarianceMatrix[0][0] - computedInverseCovarianceMatrix[0][0] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[0][1] - computedInverseCovarianceMatrix[0][1] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[0][2] - computedInverseCovarianceMatrix[0][2] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[1][0] - computedInverseCovarianceMatrix[1][0] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[1][1] - computedInverseCovarianceMatrix[1][1] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[1][2] - computedInverseCovarianceMatrix[1][2] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[2][0] - computedInverseCovarianceMatrix[2][0] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[2][1] - computedInverseCovarianceMatrix[2][1] ) > tolerance  ||
      std::fabs( trueInverseCovarianceMatrix[2][2] - computedInverseCovarianceMatrix[2][2] ) > tolerance )
    {
    std::cerr << "Inverse computation error" << std::endl;
    return EXIT_FAILURE;
    }

  //Run the distance metric with a single component measurement vector size
  DistanceMetricType::MeasurementVectorSizeType
                    singleComponentMeasurementVectorSize = 1;

  distance->SetMeasurementVectorSize( singleComponentMeasurementVectorSize );

  ::itk::NumericTraits<DistanceMetricType::OriginType>::SetLength( origin, 1);
  origin[0] = 1.5;
  distance->SetMean( origin );

  if( std::fabs(distance->GetMean()[0] - origin[0]) > tolerance )
    {
    std::cerr << " Set/Get Origin error " << std::endl;
    return EXIT_FAILURE;
    }
  covarianceMatrix.set_size( singleComponentMeasurementVectorSize,
                             singleComponentMeasurementVectorSize );
  covarianceMatrix[0][0] = 1.0;
  distance->SetCovariance( covarianceMatrix );

  MeasurementVectorType measurementSingleComponent;
  ::itk::NumericTraits<MeasurementVectorType>::SetLength( measurementSingleComponent, 1);
  measurementSingleComponent[0] = 2.5;

  trueValue = 1.0;
  distanceComputed = distance->Evaluate( measurementSingleComponent );

  if( std::fabs( distanceComputed - trueValue) > tolerance )
    {
    std::cerr << "Distance computed not correct: " << "truevalue= " << trueValue
              << "ComputedValue=" << distanceComputed << std::endl;
    return EXIT_FAILURE;
    }

  //Compute distance between two measurement vectors
  MeasurementVectorType measurementSingleComponent2;
  ::itk::NumericTraits<MeasurementVectorType>::SetLength( measurementSingleComponent2, 1);
  measurementSingleComponent2[0] = 1.5;

  trueValue = 1.0;
  distanceComputed = distance->Evaluate( measurementSingleComponent, measurementSingleComponent2 );

  if( std::fabs( distanceComputed - trueValue) > tolerance )
    {
    std::cerr << "Distance computed not correct: " << "truevalue= " << trueValue
              << "ComputedValue=" << distanceComputed << std::endl;
    return EXIT_FAILURE;
    }

  //Attempt to compute distance between two unequal size measurement vectors
  MeasurementVectorType measurementSingleComponent3;
  ::itk::NumericTraits<MeasurementVectorType>::SetLength( measurementSingleComponent3, 2);
  measurementSingleComponent3[0] = 1.5;
  measurementSingleComponent3[1] = 2.5;

  distance->Evaluate( measurementSingleComponent, measurementSingleComponent2 );

  try
    {
    distance->Evaluate( measurementSingleComponent, measurementSingleComponent3 );
    std::cerr << "Attempting to compute distance between unequal size measurement vectors"
              << "Exception should have been thrown: " << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excpt )
    {
    std::cerr << "Exception caught: " << excpt << std::endl;
    }


  return EXIT_SUCCESS;
}