1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMeanSampleFilter.h"
#include "itkHistogram.h"
#include "itkMahalanobisDistanceMetric.h"
int itkMeanSampleFilterTest3(int, char* [] )
{
std::cout << "CovarianceSampleFilter test \n \n";
typedef double MeasurementType;
const unsigned int MeasurementVectorSize = 3;
typedef itk::Statistics::Histogram< MeasurementType,
itk::Statistics::DenseFrequencyContainer2 > HistogramType;
typedef HistogramType SampleType;
HistogramType::Pointer histogram = HistogramType::New();
HistogramType::SizeType size( MeasurementVectorSize );
HistogramType::MeasurementVectorType lowerBound( MeasurementVectorSize );
HistogramType::MeasurementVectorType upperBound( MeasurementVectorSize );
size.Fill(50);
lowerBound.Fill(-350);
upperBound.Fill(450);
histogram->SetMeasurementVectorSize( MeasurementVectorSize );
histogram->Initialize( size, lowerBound, upperBound );
histogram->SetToZero();
typedef itk::Statistics::MahalanobisDistanceMetric<
HistogramType::MeasurementVectorType > MembershipFunctionType;
MembershipFunctionType::Pointer memberFunction = MembershipFunctionType::New();
typedef MembershipFunctionType::MeanVectorType MeanVectorType;
typedef MembershipFunctionType::CovarianceMatrixType CovarianceMatrixType;
MeanVectorType mean( MeasurementVectorSize );
CovarianceMatrixType covariance( MeasurementVectorSize, MeasurementVectorSize );
mean[0] = 50;
mean[1] = 52;
mean[2] = 51;
covariance.set_identity();
covariance[0][0] = 10000.0;
covariance[1][1] = 8000.0;
covariance[2][2] = 6000.0;
for( unsigned int i=0; i < MeasurementVectorSize; i++ )
{
for( unsigned int j=i; j < MeasurementVectorSize; j++ )
{
covariance[j][i] = covariance[i][j];
}
}
std::cout << "Initial Mean = " << std::endl << mean << std::endl;
std::cout << "Initial Covariance = " << std::endl << covariance << std::endl;
memberFunction->SetMean( mean );
memberFunction->SetCovariance( covariance );
HistogramType::Iterator itr = histogram->Begin();
HistogramType::Iterator end = histogram->End();
typedef HistogramType::AbsoluteFrequencyType AbsoluteFrequencyType;
while( itr != end )
{
const double MahalanobisDistance =
memberFunction->Evaluate( itr.GetMeasurementVector() );
const double MahalanobisDistance2 = MahalanobisDistance * MahalanobisDistance;
AbsoluteFrequencyType frequency = (AbsoluteFrequencyType) std::floor( 1e5 * std::exp( -0.5 * MahalanobisDistance2 ) );
itr.SetFrequency( frequency );
++itr;
}
typedef itk::Statistics::MeanSampleFilter< SampleType > FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput( histogram );
try
{
filter->Update();
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
}
FilterType::MeasurementVectorRealType meanOutput = filter->GetMean();
std::cout << "Mean: " << meanOutput << std::endl;
std::cout << "GetMeasurementVectorSize = " << filter->GetMeasurementVectorSize() << std::endl;
double epsilon = 1;
for ( unsigned int i = 0; i < MeasurementVectorSize; i++ )
{
if ( std::fabs( meanOutput[i] - mean[i] ) > epsilon )
{
std::cerr << "The computed mean value is incorrect" << std::endl;
std::cerr << "computed mean = " << meanOutput << std::endl;
std::cerr << "expected mean = " << mean << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|