File: itkNormalVariateGeneratorTest1.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (60 lines) | stat: -rw-r--r-- 1,781 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkNormalVariateGenerator.h"

int itkNormalVariateGeneratorTest1( int, char * [] )
{
  typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;

  NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();

  normalGenerator->Initialize( 101 );

  std::cout << normalGenerator->GetNameOfClass() << std::endl;

  normalGenerator->Print( std::cout );

  const unsigned int numberOfSamples = 1000;

  double sum = 0.0;
  double sum2 = 0.0;

  for( unsigned int i=0; i<numberOfSamples; i++ )
    {
    const double value = normalGenerator->GetVariate();
    sum += value;
    sum2 += value * value;
    }

  const double average = sum / numberOfSamples;

  std::cout << "Average = " << average << std::endl;

  const double variance = sum2 / numberOfSamples - sum * sum;

  std::cout << "Variance = " << variance << std::endl;

  //
  // FIXME: Add here numerical verification (regression testing)
  //


  std::cerr << "[PASSED]" << std::endl;
  return EXIT_SUCCESS;
}