File: itkStandardDeviationPerComponentSampleFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (200 lines) | stat: -rw-r--r-- 7,347 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageToListSampleFilter.h"
#include "itkStandardDeviationPerComponentSampleFilter.h"
#include "itkImageRegionIterator.h"
#include "itkCovarianceSampleFilter.h"

int itkStandardDeviationPerComponentSampleFilterTest(int, char* [] )
{
  std::cout << "StandardDeviationPerComponentSampleFilter Test \n \n";

  // Now generate an image
  enum { MeasurementVectorSize = 3 };
  typedef float MeasurementType;

  typedef itk::FixedArray< MeasurementType, MeasurementVectorSize > MeasurementVectorType;
  typedef itk::Image< MeasurementVectorType, MeasurementVectorSize > ImageType;
  typedef itk::Image< unsigned char, MeasurementVectorSize >         MaskImageType;

  ImageType::Pointer image = ImageType::New();
  ImageType::RegionType region;
  ImageType::SizeType size;
  ImageType::IndexType index;
  index.Fill(0);
  size.Fill(5);
  region.SetIndex(index);
  region.SetSize(size);


  image->SetBufferedRegion(region);
  image->Allocate();

  typedef itk::ImageRegionIterator< ImageType > ImageIterator;
  ImageIterator iter(image, region);

  unsigned int count = 0;
  MeasurementVectorType temp;
  temp.Fill(0);

  // fill the image
  while (!iter.IsAtEnd())
    {
    temp[0] =     count;
    temp[1] = 2 * count;
    temp[2] = 3 * count;
    iter.Set(temp);
    ++iter;
    ++count;
    }

  // creates an ImageToListSampleAdaptor object
  typedef  itk::Statistics::ImageToListSampleFilter< ImageType, MaskImageType >
                                     ImageToListSampleFilterType;

  ImageToListSampleFilterType::Pointer sampleGeneratingFilter
                            = ImageToListSampleFilterType::New();

  sampleGeneratingFilter->SetInput( image );

  try
    {
    sampleGeneratingFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr<< excp << std::endl;
    return EXIT_FAILURE;
    }

  typedef ImageToListSampleFilterType::ListSampleType                 ListSampleType;
  typedef itk::Statistics::StandardDeviationPerComponentSampleFilter< ListSampleType >         StandardDeviationPerComponentSampleFilterType;

  StandardDeviationPerComponentSampleFilterType::Pointer standardDeviationFilter = StandardDeviationPerComponentSampleFilterType::New();

  std::cout << standardDeviationFilter->GetNameOfClass() << std::endl;

  //Invoke update before adding an input. An exception should be
  try
    {
    standardDeviationFilter->Update();
    std::cerr << "Exception should have been thrown since \
                 Update() is invoked without setting an input " << std::endl;
    return EXIT_FAILURE;
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  standardDeviationFilter->ResetPipeline();

  if ( standardDeviationFilter->GetInput() != ITK_NULLPTR )
    {
    std::cerr << "GetInput() should return ITK_NULLPTR if the input \
                     has not been set" << std::endl;
    return EXIT_FAILURE;
    }

  standardDeviationFilter->SetInput( sampleGeneratingFilter->GetOutput() );
  try
    {
    standardDeviationFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr<< excp << std::endl;
    return EXIT_FAILURE;
    }

  standardDeviationFilter->Print( std::cout );

  const double   epsilon = 1e-6;

  // CHECK THE RESULTS
  typedef StandardDeviationPerComponentSampleFilterType::MeasurementVectorRealType  MeasurementVectorRealType;
  typedef StandardDeviationPerComponentSampleFilterType::MeasurementVectorRealDecoratedType  MeasurementVectorRealDecoratedType;

  const MeasurementVectorRealDecoratedType * standardDeviationDecorator =
    standardDeviationFilter->GetStandardDeviationPerComponentOutput();

  const MeasurementVectorRealDecoratedType * meanDecorator =
    standardDeviationFilter->GetMeanPerComponentOutput();

  MeasurementVectorRealType    standardDeviation  = standardDeviationDecorator->Get();
  std::cout << "Standard deviation:   " << standardDeviation << std::endl;

  MeasurementVectorRealType    mean  = meanDecorator->Get();
  std::cout << "Mean :   " << mean << std::endl;

  MeasurementVectorRealType    standardDeviation2 = standardDeviationFilter->GetStandardDeviationPerComponent();

  if ( ( itk::Math::abs( standardDeviation[0] - standardDeviation2[0]) > epsilon )  ||
       ( itk::Math::abs( standardDeviation[1] - standardDeviation2[1]) > epsilon )  ||
       ( itk::Math::abs( standardDeviation[2] - standardDeviation2[2]) > epsilon ) )
    {
    std::cerr << "Standard Deviation value retrieved using Get() and the decorator\
                  are not the same:: " <<  standardDeviation << "," << standardDeviation2 << std::endl;
    return EXIT_FAILURE;
    }


  typedef itk::Statistics::CovarianceSampleFilter< ListSampleType > CovarianceSampleFilterType;
  CovarianceSampleFilterType::Pointer covarianceFilter = CovarianceSampleFilterType::New();
  covarianceFilter->SetInput( sampleGeneratingFilter->GetOutput());

  try
    {
    covarianceFilter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  CovarianceSampleFilterType::MeasurementVectorRealType meanCalculatedUsingCovarianceSampleFilter = covarianceFilter->GetMean();

  if ( ( itk::Math::abs( meanCalculatedUsingCovarianceSampleFilter[0] - mean[0]) > epsilon )  ||
       ( itk::Math::abs( meanCalculatedUsingCovarianceSampleFilter[1] - mean[1]) > epsilon )  ||
       ( itk::Math::abs( meanCalculatedUsingCovarianceSampleFilter[2] - mean[2]) > epsilon ) )
    {
    std::cerr << "Mean calculated using the CovarianceSampleFilter is different from\
                 the one calculated using the StandardDeviationPerComponentSampleFilter " << std::endl;
    return EXIT_FAILURE;
    }

  CovarianceSampleFilterType::MatrixType covarianceCalculatedUsingCovarianceSampleFilter = covarianceFilter->GetCovarianceMatrix();

  for( unsigned int k = 0; k < MeasurementVectorSize; k++ )
    {
    const double variance = covarianceCalculatedUsingCovarianceSampleFilter(k,k);
    const double standardDeviationValue = std::sqrt( variance );

    if ( ( itk::Math::abs( standardDeviationValue - standardDeviation[k] ) > epsilon ) )
      {
      std::cerr << "Standard deviation calculated using the CovarianceSampleFilter";
      std::cerr << " (as the square root of the diagonal) is different from ";
      std::cerr << " the one calculated using the StandardDeviationPerComponentSampleFilter " << std::endl;
      return EXIT_FAILURE;
      }
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}