1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkWeightedCovarianceSampleFilter.h"
#include "itkListSample.h"
const unsigned int MeasurementVectorSize2 = 3;
unsigned int counter2 = 0;
typedef itk::Array< float > MeasurementVectorType2;
namespace itk {
namespace Statistics {
template < typename TSample >
class MyWeightedCovarianceSampleFilter : public WeightedCovarianceSampleFilter< TSample >
{
public:
typedef MyWeightedCovarianceSampleFilter Self;
typedef WeightedCovarianceSampleFilter<TSample> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef TSample SampleType;
itkNewMacro(Self);
//method to invoke MakeOutput with index value different
//from one or zero. This is to check if an exception will be
// thrown
void CreateInvalidOutput()
{
unsigned int index=3;
Superclass::MakeOutput( index );
}
};
}
}
class WeightedCovarianceTestFunction :
public itk::FunctionBase< MeasurementVectorType2, double >
{
public:
/** Standard class typedefs. */
typedef WeightedCovarianceTestFunction Self;
typedef itk::FunctionBase< MeasurementVectorType2, double > Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macros. */
itkTypeMacro(WeightedCovarianceTestFunction, FunctionBase);
itkNewMacro(Self);
/** Input type */
typedef MeasurementVectorType2 InputType;
/** Output type */
typedef double OutputType;
/**Evaluate at the specified input position */
virtual OutputType Evaluate( const InputType & itkNotUsed( input ) ) const ITK_OVERRIDE
{
MeasurementVectorType2 measurements;
// set the weight factor of the measurment
// vector with valuev[2, 2] to 0.5.
return 1.0;
}
protected:
WeightedCovarianceTestFunction() {}
~WeightedCovarianceTestFunction() ITK_OVERRIDE {}
}; // end of class
int itkWeightedCovarianceSampleFilterTest2(int, char* [] )
{
std::cout << "WeightedCovarianceSampleFilter test \n \n";
typedef itk::Statistics::ListSample<
MeasurementVectorType2 > SampleType;
typedef itk::Statistics::MyWeightedCovarianceSampleFilter< SampleType >
FilterType;
typedef FilterType::MatrixType CovarianceMatrixType;
FilterType::Pointer filter = FilterType::New();
MeasurementVectorType2 measure;
itk::NumericTraits<MeasurementVectorType2>::SetLength(
measure, MeasurementVectorSize2);
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( MeasurementVectorSize2 );
measure[0] = 4.00;
measure[1] = 2.00;
measure[2] = 0.60;
sample->PushBack( measure );
measure[0] = 4.20;
measure[1] = 2.10;
measure[2] = 0.59;
sample->PushBack( measure );
measure[0] = 3.90;
measure[1] = 2.00;
measure[2] = 0.58;
sample->PushBack( measure );
measure[0] = 4.30;
measure[1] = 2.10;
measure[2] = 0.62;
sample->PushBack( measure );
measure[0] = 4.10;
measure[1] = 2.20;
measure[2] = 0.63;
sample->PushBack( measure );
std::cout << filter->GetNameOfClass() << std::endl;
filter->Print(std::cout);
//Invoke update before adding an input. An exception should be
//thrown.
try
{
filter->Update();
std::cerr << "Exception should have been thrown since \
Update() is invoked without setting an input" << std::endl;
return EXIT_FAILURE;
}
catch ( itk::ExceptionObject & excp )
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
if ( filter->GetInput() != ITK_NULLPTR )
{
std::cerr << "GetInput() should return ITK_NULLPTR if the input \
has not been set" << std::endl;
return EXIT_FAILURE;
}
//test if exception is thrown if a derived class tries to create
// an invalid output
try
{
filter->CreateInvalidOutput();
std::cerr << "Exception should have been thrown: " << std::endl;
return EXIT_FAILURE;
}
catch ( itk::ExceptionObject & excp )
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
filter->ResetPipeline();
// Run the filter with no weights
filter->SetInput( sample );
try
{
filter->Update();
}
catch ( itk::ExceptionObject & excp )
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
typedef FilterType::MeasurementVectorRealType MeasurementVectorRealType;
MeasurementVectorRealType mean = filter->GetMean();
CovarianceMatrixType matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
//Check the results
double epsilon = 1e-2;
float value33[3] = {4.10f, 2.08f, 0.604f};
MeasurementVectorRealType meanExpected33( MeasurementVectorSize2 );
for (unsigned int i = 0; i < MeasurementVectorSize2; i++)
{
meanExpected33[i] = value33[i];
}
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
if ( std::abs( meanExpected33[i] - mean[i] ) > epsilon )
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
CovarianceMatrixType matrixExpected33( MeasurementVectorSize2, MeasurementVectorSize2 );
matrixExpected33[0][0] = 0.025;
matrixExpected33[0][1] = 0.0075;
matrixExpected33[0][2] = 0.00175;
matrixExpected33[1][0] = 0.0075;
matrixExpected33[1][1] = 0.0070;
matrixExpected33[1][2] = 0.00135;
matrixExpected33[2][0] = 0.00175;
matrixExpected33[2][1] = 0.00135;
matrixExpected33[2][2] = 0.00043;
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
for ( unsigned int j = 0; j < MeasurementVectorSize2; j++ )
if ( std::abs( matrixExpected33[i][j] - matrix[i][j] ) > epsilon )
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
//Specify weight
typedef FilterType::WeightArrayType WeightArrayType;
WeightArrayType weightArray(sample->Size());
weightArray.Fill(1.0);
filter->SetWeights( weightArray );
// run with equal weights
try
{
filter->Update();
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
float value3[3] = {4.10f, 2.08f, 0.604f};
MeasurementVectorRealType meanExpected3( MeasurementVectorSize2 );
for (unsigned int i = 0; i < MeasurementVectorSize2; i++)
{
meanExpected3[i] = value3[i];
}
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
if ( std::abs( meanExpected3[i] - mean[i] ) > epsilon )
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
CovarianceMatrixType matrixExpected( MeasurementVectorSize2, MeasurementVectorSize2 );
matrixExpected[0][0] = 0.025;
matrixExpected[0][1] = 0.0075;
matrixExpected[0][2] = 0.00175;
matrixExpected[1][0] = 0.0075;
matrixExpected[1][1] = 0.0070;
matrixExpected[1][2] = 0.00135;
matrixExpected[2][0] = 0.00175;
matrixExpected[2][1] = 0.00135;
matrixExpected[2][2] = 0.00043;
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
for ( unsigned int j = 0; j < MeasurementVectorSize2; j++ )
{
if ( std::abs( matrixExpected[i][j] - matrix[i][j] ) > epsilon )
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
filter->SetWeights( weightArray );
try
{
filter->Update();
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
if ( std::abs( meanExpected3[i] - mean[i] ) > epsilon )
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
for ( unsigned int j = 0; j < MeasurementVectorSize2; j++ )
{
if ( std::abs( matrixExpected[i][j] - matrix[i][j] ) > epsilon )
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
//set a constant 1.0 weight using a function
WeightedCovarianceTestFunction::Pointer weightFunction = WeightedCovarianceTestFunction::New();
filter->SetWeightingFunction( weightFunction.GetPointer() );
try
{
filter->Update();
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
if ( std::abs( meanExpected3[i] - mean[i] ) > epsilon )
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
for ( unsigned int i = 0; i < MeasurementVectorSize2; i++ )
{
for ( unsigned int j = 0; j < MeasurementVectorSize2; j++ )
{
if ( std::abs( matrixExpected[i][j] - matrix[i][j] ) > epsilon )
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|