File: itkWeightedMeanSampleFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (256 lines) | stat: -rw-r--r-- 7,152 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkWeightedMeanSampleFilter.h"
#include "itkListSample.h"

const unsigned int                  MeasurementVectorSize = 2;

typedef itk::FixedArray<
    float, MeasurementVectorSize >             MeasurementVectorType;

class WeightedMeanTestFunction :
  public itk::FunctionBase< MeasurementVectorType, double >
{
public:
  /** Standard class typedefs. */
  typedef WeightedMeanTestFunction Self;

  typedef itk::FunctionBase< MeasurementVectorType, double > Superclass;

  typedef itk::SmartPointer<Self> Pointer;

  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macros. */
  itkTypeMacro(WeightedMeanTestFunction, FunctionBase);
  itkNewMacro(Self);

  /** Input type */
  typedef MeasurementVectorType InputType;

  /** Output type */
  typedef double OutputType;

  /**Evaluate at the specified input position */
  virtual OutputType Evaluate( const InputType& input ) const ITK_OVERRIDE
    {
    MeasurementVectorType measurements;
    // set the weight factor of the measurment
    // vector with valuev[2, 2] to 0.5.
    measurements.Fill(2.0f);
    if ( input != measurements )
      {
      return 0.5;
      }
    else
      {
      return 1.0;
      }
    }

protected:
  WeightedMeanTestFunction() {}
  ~WeightedMeanTestFunction() ITK_OVERRIDE {}
}; // end of class


int itkWeightedMeanSampleFilterTest(int, char* [] )
{
  std::cout << "WeightedMeanSampleFilter test \n \n";

  const unsigned int                  numberOfMeasurementVectors = 5;
  unsigned int                        counter;

  typedef itk::Statistics::ListSample<
    MeasurementVectorType >                    SampleType;

  SampleType::Pointer sample = SampleType::New();

  sample->SetMeasurementVectorSize( MeasurementVectorSize );

  MeasurementVectorType               measure;

  //reset counter
  counter = 0;

  while ( counter < numberOfMeasurementVectors )
    {
    for( unsigned int i=0; i<MeasurementVectorSize; i++)
      {
      measure[i] = counter;
      }
    sample->PushBack( measure );
    counter++;
    }

  typedef itk::Statistics::WeightedMeanSampleFilter< SampleType >
    FilterType;

  FilterType::Pointer filter = FilterType::New();

  std::cout << filter->GetNameOfClass() << std::endl;
  filter->Print(std::cout);

  //Invoke update before adding an input. An exception should be
  //thrown.
  try
    {
    filter->Update();
    std::cerr << "Exception should have been thrown since \
                    Update() is invoked without setting an input " << std::endl;
    return EXIT_FAILURE;
    }
  catch ( itk::ExceptionObject & excp )
    {
  std::cerr << "Exception caught: " << excp << std::endl;
  }

  if ( filter->GetInput() != ITK_NULLPTR )
    {
    std::cerr << "GetInput() should return ITK_NULLPTR if the input \
                     has not been set" << std::endl;
    return EXIT_FAILURE;
    }

  filter->ResetPipeline();
  filter->SetInput( sample );

  //run the filters without weighting coefficients
  try
    {
    filter->Update();
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  const FilterType::MeasurementVectorDecoratedType * decorator = filter->GetOutput();
  FilterType::MeasurementVectorRealType    meanOutput  = decorator->Get();

  FilterType::MeasurementVectorRealType mean;

  mean[0] = 2.0;
  mean[1] = 2.0;

 FilterType::MeasurementVectorType::ValueType    epsilon = 1e-6;

  if ( ( std::fabs( meanOutput[0] - mean[0]) > epsilon )  ||
       ( std::fabs( meanOutput[1] - mean[1]) > epsilon ))
    {
    std::cerr << "Wrong result " << std::endl;
    std::cerr << meanOutput[0] << " " << mean[0] << " "
            << meanOutput[1] << " " << mean[1] << " " << std::endl;
    std::cerr << "The result is not what is expected" << std::endl;
    return EXIT_FAILURE;
    }

  typedef FilterType::WeightArrayType  WeightArrayType;
  WeightArrayType weightArray(sample->Size());
  weightArray.Fill(1.0);

  filter->SetWeights( weightArray );

  try
    {
    filter->Update();
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  decorator = filter->GetOutput();
  meanOutput  = decorator->Get();

  mean[0] = 2.0;
  mean[1] = 2.0;

  if ( ( std::fabs( meanOutput[0] - mean[0]) > epsilon )  ||
       ( std::fabs( meanOutput[1] - mean[1]) > epsilon ))
    {
    std::cerr << "Wrong result " << std::endl;
    std::cerr << meanOutput[0] << " " << mean[0] << " "
            << meanOutput[1] << " " << mean[1] << " " << std::endl;
    std::cerr << "The result is not what is expected" << std::endl;
    return EXIT_FAILURE;
    }

  //change the weight of the last element to 0.5 and recompute
  weightArray[numberOfMeasurementVectors - 1] = 0.5;
  filter->SetWeights( weightArray );

  try
    {
    filter->Update();
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  decorator = filter->GetOutput();
  meanOutput  = decorator->Get();

  mean[0] = 1.7777778;
  mean[1] = 1.7777778;

  if ( ( std::fabs( meanOutput[0] - mean[0]) > epsilon )  ||
       ( std::fabs( meanOutput[1] - mean[1]) > epsilon ))
    {
    std::cerr << "Wrong result" << std::endl;
    std::cerr << meanOutput[0] << " " << mean[0] << " "
            << meanOutput[1] << " " << mean[1] << " " << std::endl;

    std::cerr << "The result is not what is expected" << std::endl;
    return EXIT_FAILURE;
    }

  //set the weight using a function
  WeightedMeanTestFunction::Pointer weightFunction = WeightedMeanTestFunction::New();
  filter->SetWeightingFunction( weightFunction.GetPointer() );

  try
    {
    filter->Update();
    }
  catch ( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << excp << std::endl;
    }

  decorator = filter->GetOutput();
  meanOutput  = decorator->Get();

  mean[0] = 2.0;
  mean[1] = 2.0;

  if ( ( std::fabs( meanOutput[0] - mean[0]) > epsilon )  ||
       ( std::fabs( meanOutput[1] - mean[1]) > epsilon ))
    {
    std::cerr << "Wrong result" << std::endl;
    std::cerr << meanOutput[0] << " " << mean[0] << " "
            << meanOutput[1] << " " << mean[1] << " " << std::endl;
    std::cerr << "The result is not what is expected" << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}