1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveMultiResolutionPyramidImageFilter_hxx
#define itkRecursiveMultiResolutionPyramidImageFilter_hxx
#include "itkRecursiveMultiResolutionPyramidImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkCastImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkMacro.h"
#include "itkResampleImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkMath.h"
namespace itk
{
/**
* Constructor
*/
template< typename TInputImage, typename TOutputImage >
RecursiveMultiResolutionPyramidImageFilter< TInputImage, TOutputImage >
::RecursiveMultiResolutionPyramidImageFilter()
{
this->Superclass::m_UseShrinkImageFilter = true;
}
/**
* GenerateData
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveMultiResolutionPyramidImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
if ( !this->IsScheduleDownwardDivisible( this->GetSchedule() ) )
{
// use the Superclass implementation
this->Superclass::GenerateData();
return;
}
// Get the input and output pointers
InputImageConstPointer inputPtr = this->GetInput();
// Create caster, smoother and resampleShrink filters
typedef CastImageFilter< TInputImage, TOutputImage > CasterType;
typedef CastImageFilter< TOutputImage, TOutputImage > CopierType;
typedef DiscreteGaussianImageFilter< TOutputImage, TOutputImage > SmootherType;
typedef ImageToImageFilter< TOutputImage, TOutputImage > ImageToImageType;
typedef ResampleImageFilter< TOutputImage, TOutputImage > ResampleShrinkerType;
typedef ShrinkImageFilter< TOutputImage, TOutputImage > ShrinkerType;
typename CasterType::Pointer caster = CasterType::New();
typename CopierType::Pointer copier = CopierType::New();
typename SmootherType::Pointer smoother = SmootherType::New();
typename ImageToImageType::Pointer shrinkerFilter;
//
// only one of these pointers is going to be valid, depending on the
// value of UseShrinkImageFilter flag
typename ResampleShrinkerType::Pointer resampleShrinker;
typename ShrinkerType::Pointer shrinker;
if ( this->GetUseShrinkImageFilter() )
{
shrinker = ShrinkerType::New();
shrinkerFilter = shrinker.GetPointer();
}
else
{
resampleShrinker = ResampleShrinkerType::New();
typedef itk::LinearInterpolateImageFunction< OutputImageType, double >
LinearInterpolatorType;
typename LinearInterpolatorType::Pointer interpolator =
LinearInterpolatorType::New();
typedef itk::IdentityTransform< double, OutputImageType::ImageDimension >
IdentityTransformType;
typename IdentityTransformType::Pointer identityTransform =
IdentityTransformType::New();
resampleShrinker->SetInterpolator(interpolator);
resampleShrinker->SetDefaultPixelValue(0);
resampleShrinker->SetTransform(identityTransform);
shrinkerFilter = resampleShrinker.GetPointer();
}
int ilevel;
unsigned int idim;
unsigned int factors[ImageDimension];
double variance[ImageDimension];
bool allOnes;
OutputImagePointer outputPtr;
OutputImagePointer swapPtr;
typename TOutputImage::RegionType LPRegion;
smoother->SetUseImageSpacing(false);
smoother->SetMaximumError( this->GetMaximumError() );
shrinkerFilter->SetInput( smoother->GetOutput() );
// recursively compute outputs starting from the last one
for ( ilevel = this->GetNumberOfLevels() - 1; ilevel > -1; ilevel-- )
{
this->UpdateProgress( 1.0 - static_cast< float >( 1 + ilevel )
/ static_cast< float >( this->GetNumberOfLevels() ) );
// Allocate memory for each output
outputPtr = this->GetOutput(ilevel);
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
// cached a copy of the largest possible region
LPRegion = outputPtr->GetLargestPossibleRegion();
// Check shrink factors and compute variances
allOnes = true;
for ( idim = 0; idim < ImageDimension; idim++ )
{
if ( ilevel == static_cast< int >( this->GetNumberOfLevels() ) - 1 )
{
factors[idim] = this->GetSchedule()[ilevel][idim];
}
else
{
factors[idim] = this->GetSchedule()[ilevel][idim]
/ this->GetSchedule()[ilevel + 1][idim];
}
variance[idim] = itk::Math::sqr( 0.5
* static_cast< float >( factors[idim] ) );
if ( factors[idim] != 1 )
{
allOnes = false;
}
else
{
variance[idim] = 0.0;
}
}
if ( allOnes && ilevel == static_cast< int >( this->GetNumberOfLevels() ) - 1 )
{
// just copy the input over
caster->SetInput(inputPtr);
caster->GraftOutput(outputPtr);
// ensure only the requested region is updated
caster->UpdateOutputInformation();
caster->GetOutput()->SetRequestedRegion( outputPtr->GetRequestedRegion() );
caster->GetOutput()->PropagateRequestedRegion();
caster->GetOutput()->UpdateOutputData();
swapPtr = caster->GetOutput();
}
else if ( allOnes )
{
// just copy the data over
copier->SetInput(swapPtr);
copier->GraftOutput(outputPtr);
// ensure only the requested region is updated
copier->GetOutput()->UpdateOutputInformation();
copier->GetOutput()->SetRequestedRegion( outputPtr->GetRequestedRegion() );
copier->GetOutput()->PropagateRequestedRegion();
copier->GetOutput()->UpdateOutputData();
swapPtr = copier->GetOutput();
}
else
{
if ( ilevel == static_cast< int >( this->GetNumberOfLevels() ) - 1 )
{
// use caster -> smoother -> shrinker piepline
caster->SetInput(inputPtr);
smoother->SetInput( caster->GetOutput() );
}
else
{
// use smoother -> shrinker pipeline
smoother->SetInput(swapPtr);
}
smoother->SetVariance(variance);
// shrinker->SetShrinkFactors( factors );
// shrinker->GraftOutput( outputPtr );
if ( !this->GetUseShrinkImageFilter() )
{
resampleShrinker->SetOutputParametersFromImage(outputPtr);
}
else
{
shrinker->SetShrinkFactors(factors);
}
shrinkerFilter->GraftOutput(outputPtr);
shrinkerFilter->Modified();
// ensure only the requested region is updated
shrinkerFilter->GetOutput()->UpdateOutputInformation();
shrinkerFilter->GetOutput()->SetRequestedRegion( outputPtr->GetRequestedRegion() );
shrinkerFilter->GetOutput()->PropagateRequestedRegion();
shrinkerFilter->GetOutput()->UpdateOutputData();
swapPtr = shrinkerFilter->GetOutput();
}
// graft pipeline output back onto this filter's output
swapPtr->SetLargestPossibleRegion(LPRegion);
this->GraftNthOutput(ilevel, swapPtr);
// disconnect from pipeline to stop cycle
swapPtr->DisconnectPipeline();
}
}
/**
* PrintSelf method
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveMultiResolutionPyramidImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
/*
* GenerateOutputRequestedRegion
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveMultiResolutionPyramidImageFilter< TInputImage, TOutputImage >
::GenerateOutputRequestedRegion(DataObject *ptr)
{
// call the superclass's implementation of this method
Superclass::GenerateOutputRequestedRegion(ptr);
TOutputImage *refOutputPtr = itkDynamicCastInDebugMode< TOutputImage * >( ptr );
if ( !refOutputPtr )
{
itkExceptionMacro(<< "Could not cast ptr to TOutputImage*.");
}
// find the index for this output
unsigned int refLevel;
refLevel = static_cast<unsigned int>( refOutputPtr->GetSourceOutputIndex() );
typedef typename TOutputImage::PixelType OutputPixelType;
typedef GaussianOperator< OutputPixelType, ImageDimension > OperatorType;
OperatorType *oper = new OperatorType;
oper->SetMaximumError( this->GetMaximumError() );
typedef typename OutputImageType::SizeType SizeType;
typedef typename OutputImageType::IndexType IndexType;
typedef typename OutputImageType::RegionType RegionType;
int ilevel, idim;
unsigned int factors[ImageDimension];
typename TInputImage::SizeType radius;
RegionType requestedRegion;
SizeType requestedSize;
IndexType requestedIndex;
// compute requested regions for lower levels
for ( ilevel = refLevel + 1; ilevel < static_cast< int >( this->GetNumberOfLevels() );
ilevel++ )
{
requestedRegion = this->GetOutput(ilevel - 1)->GetRequestedRegion();
requestedSize = requestedRegion.GetSize();
requestedIndex = requestedRegion.GetIndex();
for ( idim = 0; idim < static_cast< int >( ImageDimension ); idim++ )
{
factors[idim] = this->GetSchedule()[ilevel - 1][idim] / this->GetSchedule()[ilevel][idim];
// take into account shrink component
requestedSize[idim] *= static_cast< SizeValueType >( factors[idim] );
requestedIndex[idim] *= static_cast< IndexValueType >( factors[idim] );
// take into account smoothing component
if ( factors[idim] > 1 )
{
oper->SetDirection(idim);
oper->SetVariance( itk::Math::sqr( 0.5
* static_cast< float >( factors[idim] ) ) );
oper->CreateDirectional();
radius[idim] = oper->GetRadius()[idim];
}
else
{
radius[idim] = 0;
}
}
requestedRegion.SetSize(requestedSize);
requestedRegion.SetIndex(requestedIndex);
requestedRegion.PadByRadius(radius);
requestedRegion.Crop( this->GetOutput(ilevel)->
GetLargestPossibleRegion() );
this->GetOutput(ilevel)->SetRequestedRegion(requestedRegion);
}
// compute requested regions for higher levels
for ( ilevel = refLevel - 1; ilevel > -1; ilevel-- )
{
requestedRegion = this->GetOutput(ilevel + 1)->GetRequestedRegion();
requestedSize = requestedRegion.GetSize();
requestedIndex = requestedRegion.GetIndex();
for ( idim = 0; idim < static_cast< int >( ImageDimension ); idim++ )
{
factors[idim] = this->GetSchedule()[ilevel][idim] / this->GetSchedule()[ilevel + 1][idim];
// take into account smoothing component
if ( factors[idim] > 1 )
{
oper->SetDirection(idim);
oper->SetVariance( itk::Math::sqr( 0.5
* static_cast< float >( factors[idim] ) ) );
oper->CreateDirectional();
radius[idim] = oper->GetRadius()[idim];
}
else
{
radius[idim] = 0;
}
requestedSize[idim] -= static_cast< SizeValueType >(
2 * radius[idim] );
requestedIndex[idim] += radius[idim];
// take into account shrink component
requestedSize[idim] = static_cast< SizeValueType >( std::floor(
static_cast< double >( requestedSize[idim] )
/ static_cast< double >( factors[idim] ) ) );
if ( requestedSize[idim] < 1 )
{
requestedSize[idim] = 1;
}
requestedIndex[idim] = static_cast< IndexValueType >( std::ceil(
static_cast< double >( requestedIndex[idim] )
/ static_cast< double >( factors[idim] ) ) );
}
requestedRegion.SetSize(requestedSize);
requestedRegion.SetIndex(requestedIndex);
requestedRegion.Crop( this->GetOutput(ilevel)->
GetLargestPossibleRegion() );
this->GetOutput(ilevel)->SetRequestedRegion(requestedRegion);
}
// clean up
delete oper;
}
/**
* GenerateInputRequestedRegion
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveMultiResolutionPyramidImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
InputImagePointer inputPtr =
const_cast< InputImageType * >( this->GetInput() );
if ( !inputPtr )
{
itkExceptionMacro(<< "Input has not been set.");
}
// compute baseIndex and baseSize
typedef typename OutputImageType::SizeType SizeType;
typedef typename OutputImageType::IndexType IndexType;
typedef typename OutputImageType::RegionType RegionType;
unsigned int refLevel = this->GetNumberOfLevels() - 1;
SizeType baseSize = this->GetOutput(refLevel)->GetRequestedRegion().GetSize();
IndexType baseIndex = this->GetOutput(refLevel)->GetRequestedRegion().GetIndex();
RegionType baseRegion;
unsigned int idim;
for ( idim = 0; idim < ImageDimension; idim++ )
{
unsigned int factor = this->GetSchedule()[refLevel][idim];
baseIndex[idim] *= static_cast< IndexValueType >( factor );
baseSize[idim] *= static_cast< SizeValueType >( factor );
}
baseRegion.SetIndex(baseIndex);
baseRegion.SetSize(baseSize);
// compute requirements for the smoothing part
typedef typename TOutputImage::PixelType OutputPixelType;
typedef GaussianOperator< OutputPixelType, ImageDimension > OperatorType;
OperatorType *oper = new OperatorType;
typename TInputImage::SizeType radius;
RegionType inputRequestedRegion = baseRegion;
refLevel = 0;
for ( idim = 0; idim < TInputImage::ImageDimension; idim++ )
{
oper->SetDirection(idim);
oper->SetVariance( itk::Math::sqr( 0.5 * static_cast< float >(
this->GetSchedule()[refLevel][idim] ) ) );
oper->SetMaximumError( this->GetMaximumError() );
oper->CreateDirectional();
radius[idim] = oper->GetRadius()[idim];
if ( this->GetSchedule()[refLevel][idim] <= 1 )
{
radius[idim] = 0;
}
}
delete oper;
inputRequestedRegion.PadByRadius(radius);
// make sure the requested region is within the largest possible
inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() );
// set the input requested region
inputPtr->SetRequestedRegion(inputRequestedRegion);
}
} // namespace itk
#endif
|