1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGaussianImageSource.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkKullbackLeiblerCompareHistogramImageToImageMetric.h"
#include "itkTranslationTransform.h"
/** This test uses two 2D-Gaussians (standard deviation RegionSize/2).
This test computes the mutual information between the two images.
*/
int itkCompareHistogramImageToImageMetricTest(int , char* [])
{
try {
// Create two simple images.
const unsigned int ImageDimension = 2;
typedef double PixelType;
typedef double CoordinateRepresentationType;
//Allocate Images
typedef itk::Image<PixelType,ImageDimension> MovingImageType;
typedef itk::Image<PixelType,ImageDimension> FixedImageType;
// Declare Gaussian Sources
typedef itk::GaussianImageSource<MovingImageType> MovingImageSourceType;
typedef itk::GaussianImageSource<FixedImageType> FixedImageSourceType;
// Note: the following declarations are classical arrays
FixedImageType::SizeValueType fixedImageSize[] = {100, 100};
MovingImageType::SizeValueType movingImageSize[] = {100, 100};
FixedImageType::SpacingValueType fixedImageSpacing[] = {1.0f, 1.0f};
MovingImageType::SpacingValueType movingImageSpacing[] = {1.0f, 1.0f};
FixedImageType::PointValueType fixedImageOrigin[] = {0.0f, 0.0f};
MovingImageType::PointValueType movingImageOrigin[] = {0.0f, 0.0f};
MovingImageSourceType::Pointer movingImageSource =
MovingImageSourceType::New();
FixedImageSourceType::Pointer fixedImageSource =
FixedImageSourceType::New();
movingImageSource->SetSize(movingImageSize);
movingImageSource->SetOrigin(movingImageOrigin);
movingImageSource->SetSpacing(movingImageSpacing);
movingImageSource->SetNormalized(false);
movingImageSource->SetScale(250.0f);
fixedImageSource->SetSize(fixedImageSize);
fixedImageSource->SetOrigin(fixedImageOrigin);
fixedImageSource->SetSpacing(fixedImageSpacing);
fixedImageSource->SetNormalized(false);
fixedImageSource->SetScale(250.0f);
movingImageSource->Update(); // Force the filter to run
fixedImageSource->Update(); // Force the filter to run
MovingImageType::Pointer movingImage = movingImageSource->GetOutput();
FixedImageType::Pointer fixedImage = fixedImageSource->GetOutput();
// Set up the metric.
typedef itk::KullbackLeiblerCompareHistogramImageToImageMetric<
FixedImageType,
MovingImageType
> MetricType;
typedef MetricType::TransformType TransformBaseType;
typedef MetricType::ScalesType ScalesType;
typedef TransformBaseType::ParametersType ParametersType;
MetricType::Pointer metric = MetricType::New();
unsigned int nBins = 256;
MetricType::HistogramType::SizeType histSize;
histSize.SetSize(2);
histSize[0] = nBins;
histSize[1] = nBins;
metric->SetHistogramSize(histSize);
// Plug the images into the metric.
metric->SetFixedImage(fixedImage);
metric->SetMovingImage(movingImage);
// Set up a transform.
typedef itk::TranslationTransform<CoordinateRepresentationType,
ImageDimension> TransformType;
TransformType::Pointer transform = TransformType::New();
metric->SetTransform(transform.GetPointer());
// Set up an interpolator.
typedef itk::LinearInterpolateImageFunction<MovingImageType,
double> InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
interpolator->SetInputImage(movingImage.GetPointer());
metric->SetInterpolator(interpolator.GetPointer());
// Define the region over which the metric will be computed.
metric->SetFixedImageRegion(fixedImage->GetBufferedRegion());
// Set up transform parameters.
ParametersType parameters(transform->GetNumberOfParameters());
for (unsigned int k = 0; k < ImageDimension; k++)
parameters[k] = 0.0f;
// Set scales for derivative calculation.
ScalesType scales(transform->GetNumberOfParameters());
for (unsigned int k = 0; k < transform->GetNumberOfParameters(); k++)
scales[k] = 1;
metric->SetDerivativeStepLengthScales(scales);
// Now set up the Training Stuff
metric->SetTrainingTransform(transform.GetPointer());
metric->SetTrainingFixedImage(fixedImage);
metric->SetTrainingFixedImageRegion(fixedImage->GetBufferedRegion());
metric->SetTrainingMovingImage(movingImage);
metric->SetTrainingInterpolator(interpolator.GetPointer());
// Initialize the metric.
metric->Initialize();
// Print out metric value and derivative.
MetricType::MeasureType measure = metric->GetValue(parameters);
MetricType::DerivativeType derivative;
metric->GetDerivative(parameters, derivative);
std::cout << "Metric value = " << measure << std::endl
<< "Derivative = " << derivative << std::endl;
// Exercise Print() method.
metric->Print(std::cout);
std::cout << "Test passed." << std::endl;
}
catch (itk::ExceptionObject& ex)
{
std::cerr << "Exception caught!" << std::endl;
std::cerr << ex << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|