1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGaussianImageSource.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkMeanSquaresHistogramImageToImageMetric.h"
#include "itkTranslationTransform.h"
#include "itkMath.h"
int itkHistogramImageToImageMetricTest(int , char*[] )
{
// Create two simple images.
const unsigned int ImageDimension = 2;
typedef double PixelType;
typedef double CoordinateRepresentationType;
//Allocate Images
typedef itk::Image<PixelType,ImageDimension> MovingImageType;
typedef itk::Image<PixelType,ImageDimension> FixedImageType;
// Declare Gaussian Sources
typedef itk::GaussianImageSource<MovingImageType> MovingImageSourceType;
typedef itk::GaussianImageSource<FixedImageType> FixedImageSourceType;
// Note: the following declarations are classical arrays
FixedImageType::SizeValueType fixedImageSize[] = {100, 100};
MovingImageType::SizeValueType movingImageSize[] = {100, 100};
FixedImageType::SpacingValueType fixedImageSpacing[] = {1.0f, 1.0f};
MovingImageType::SpacingValueType movingImageSpacing[] = {1.0f, 1.0f};
FixedImageType::PointValueType fixedImageOrigin[] = {0.0f, 0.0f};
MovingImageType::PointValueType movingImageOrigin[] = {0.0f, 0.0f};
MovingImageSourceType::Pointer movingImageSource =
MovingImageSourceType::New();
FixedImageSourceType::Pointer fixedImageSource =
FixedImageSourceType::New();
movingImageSource->SetSize(movingImageSize);
movingImageSource->SetOrigin(movingImageOrigin);
movingImageSource->SetSpacing(movingImageSpacing);
movingImageSource->SetNormalized(false);
movingImageSource->SetScale(250.0f);
fixedImageSource->SetSize(fixedImageSize);
fixedImageSource->SetOrigin(fixedImageOrigin);
fixedImageSource->SetSpacing(fixedImageSpacing);
fixedImageSource->SetNormalized(false);
fixedImageSource->SetScale(250.0f);
movingImageSource->Update(); // Force the filter to run
fixedImageSource->Update(); // Force the filter to run
MovingImageType::Pointer movingImage = movingImageSource->GetOutput();
FixedImageType::Pointer fixedImage = fixedImageSource->GetOutput();
// Set up the metric.
typedef itk::MeanSquaresHistogramImageToImageMetric<FixedImageType,
MovingImageType> MetricType;
typedef MetricType::TransformType TransformBaseType;
typedef MetricType::ScalesType ScalesType;
typedef MetricType::DerivativeType DerivativeType;
typedef TransformBaseType::ParametersType ParametersType;
MetricType::Pointer metric = MetricType::New();
unsigned int nBins = 256;
MetricType::HistogramType::SizeType histSize;
histSize.SetSize(2);
histSize[0] = nBins;
histSize[1] = nBins;
metric->SetHistogramSize(histSize);
// Plug the images into the metric.
metric->SetFixedImage(fixedImage);
metric->SetMovingImage(movingImage);
// Set up a transform.
typedef itk::TranslationTransform<CoordinateRepresentationType,
ImageDimension> TransformType;
TransformType::Pointer transform = TransformType::New();
metric->SetTransform(transform.GetPointer());
// Set up an interpolator.
typedef itk::LinearInterpolateImageFunction<MovingImageType,
double> InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
interpolator->SetInputImage(movingImage.GetPointer());
metric->SetInterpolator(interpolator.GetPointer());
// Define the region over which the metric will be computed.
metric->SetFixedImageRegion(fixedImage->GetBufferedRegion());
// Set up transform parameters.
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
ParametersType parameters( numberOfParameters );
for (unsigned int k = 0; k < numberOfParameters; k++)
{
parameters[k] = 0.0;
}
// Set scales for derivative calculation.
ScalesType scales( numberOfParameters );
for (unsigned int k = 0; k < numberOfParameters; k++)
{
scales[k] = 1;
}
const double STEP_LENGTH = 0.001;
metric->SetDerivativeStepLength(STEP_LENGTH);
metric->SetDerivativeStepLengthScales(scales);
try
{
// Initialize the metric.
metric->Initialize();
// Test SetPaddingValue() and GetPaddingValue().
metric->SetPaddingValue(-1);
metric->SetUsePaddingValue(true);
if (itk::Math::NotExactlyEquals(metric->GetPaddingValue(), -1))
{
std::cerr << "Incorrect padding value." << std::endl;
return EXIT_FAILURE;
}
// Check to make sure the returned histogram size is the same as histSize.
if (histSize != metric->GetHistogramSize())
{
std::cout << "Incorrect histogram size." << std::endl;
return EXIT_FAILURE;
}
// Check GetDerivativeStepLength().
if (itk::Math::NotExactlyEquals(metric->GetDerivativeStepLength(), STEP_LENGTH))
{
std::cout << "Incorrect derivative step length." << std::endl;
return EXIT_FAILURE;
}
// Check GetDerivativeStepLengthScales().
if (metric->GetDerivativeStepLengthScales() != scales)
{
std::cout << "Incorrect scales." << std::endl;
return EXIT_FAILURE;
}
// Do some work
DerivativeType derivatives( numberOfParameters );
MetricType::MeasureType value;
for (double y = -50.0; y <= 50.0; y += 25.0)
{
parameters[1] = y;
for (double x = -50.0; x <= 50.0; x += 25.0)
{
parameters[0] = x;
metric->GetValueAndDerivative (parameters, value, derivatives);
std::cout << "Parameters: " << parameters
<< ", Value: " << value
<< ", Derivatives: " << derivatives << std::endl;
}
}
// Exercise Print() method.
metric->Print(std::cout);
std::cout << "Test passed." << std::endl;
}
catch (itk::ExceptionObject& ex)
{
std::cerr << "Exception caught!" << std::endl;
std::cerr << ex << std::endl;
return EXIT_FAILURE;
}
std::cout << "Exercise the SetLowerBound() and SetUpperBound() methods " << std::endl;
MetricType::MeasurementVectorType lowerBound;
lowerBound.Fill(0.0);
MetricType::MeasurementVectorType upperBound;
upperBound.Fill(0.0);
metric->SetLowerBound( lowerBound );
metric->SetUpperBound( upperBound );
try
{
// Initialize the metric.
metric->Initialize();
// Exercise Print() method.
metric->Print(std::cout);
std::cout << "Test passed." << std::endl;
}
catch (itk::ExceptionObject& ex)
{
std::cerr << "Exception caught!" << std::endl;
std::cerr << ex << std::endl;
return EXIT_FAILURE;
}
// Force an exception
try
{
ParametersType parameters2( 2 );
DerivativeType derivatives2( 2 );
ScalesType badScales( 1 );
metric->SetDerivativeStepLengthScales(badScales);
metric->Initialize();
metric->GetDerivative (parameters2, derivatives2);
}
catch (itk::ExceptionObject &ex)
{
std::cerr << "Expected exception caught!" << std::endl;
std::cerr << ex << std::endl;
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
|