1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkTextOutput.h"
/**
* This program test one instantiation of the itk::ImageRegistrationMethod class
*
* This file tests initialization errors.
*/
int itkImageRegistrationMethodTest(int, char* [] )
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
bool pass;
const unsigned int dimension = 3;
// Fixed Image Type
typedef itk::Image<float,dimension> FixedImageType;
// Moving Image Type
typedef itk::Image<char,dimension> MovingImageType;
// Transform Type
typedef itk::TranslationTransform< double, dimension > TransformType;
// Optimizer Type
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
// Metric Type
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Interpolation technique
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// Registration Method
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
FixedImageType::Pointer fixedImage = FixedImageType::New();
MovingImageType::Pointer movingImage = MovingImageType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
FixedImageType::SizeType size;
size.Fill( 4 ); // the size of image have to be at least 4 in each dimension to
// compute gradient image inside the metric.
FixedImageType::RegionType region( size );
fixedImage->SetRegions( region );
fixedImage->Allocate();
fixedImage->FillBuffer( 3.0 );
movingImage->SetRegions( region );
movingImage->Allocate();
movingImage->FillBuffer( 4 );
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImage );
registration->SetInterpolator( interpolator );
// Exercise Get methods
std::cout << "metric: " << registration->GetMetric() << std::endl;
std::cout << "optimizer: " << registration->GetOptimizer() << std::endl;
std::cout << "transform: " << registration->GetTransform() << std::endl;
std::cout << "fixed image: " << registration->GetFixedImage() << std::endl;
std::cout << "moving image: " << registration->GetMovingImage() << std::endl;
std::cout << "interpolator: " << registration->GetInterpolator() << std::endl;
std::cout << "initial parameters: ";
std::cout << registration->GetInitialTransformParameters() << std::endl;
typedef RegistrationType::ParametersType ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters.Fill(0);
ParametersType badParameters( 2 );
badParameters.Fill( 5 );
registration->SetInitialTransformParameters( initialParameters );
std::cout << registration;
/****************************************************
* Test out initialization errors
****************************************************/
#define TEST_INITIALIZATION_ERROR( ComponentName, badComponent, goodComponent ) \
registration->Set##ComponentName( badComponent ); \
try \
{ \
pass = false; \
registration->Update(); \
} \
catch( itk::ExceptionObject& err ) \
{ \
std::cout << "Caught expected ExceptionObject" << std::endl; \
std::cout << err << std::endl; \
pass = true; \
} \
registration->Set##ComponentName( goodComponent ); \
\
if( !pass ) \
{ \
std::cout << "Test failed." << std::endl; \
return EXIT_FAILURE; \
}
TEST_INITIALIZATION_ERROR( InitialTransformParameters, badParameters, initialParameters );
TEST_INITIALIZATION_ERROR( Metric, ITK_NULLPTR, metric );
TEST_INITIALIZATION_ERROR( Optimizer, ITK_NULLPTR, optimizer );
TEST_INITIALIZATION_ERROR( Transform, ITK_NULLPTR, transform );
TEST_INITIALIZATION_ERROR( FixedImage, ITK_NULLPTR, fixedImage );
TEST_INITIALIZATION_ERROR( MovingImage, ITK_NULLPTR, movingImage );
TEST_INITIALIZATION_ERROR( Interpolator, ITK_NULLPTR, interpolator );
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|