File: itkImageRegistrationMethodTest_1.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (211 lines) | stat: -rw-r--r-- 7,204 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"

#include "itkImageRegistrationMethodImageSource.h"

/**
 *  This program tests one instantiation of the itk::ImageRegistrationMethod class
 *
 *
 */

int itkImageRegistrationMethodTest_1(int argc, char* argv[] )
{

  bool pass = true;

  const unsigned int dimension = 2;

  // Fixed Image Type
  typedef itk::Image<float,dimension>               FixedImageType;

  // Moving Image Type
  typedef itk::Image<float,dimension>               MovingImageType;

  // Size Type
  typedef MovingImageType::SizeType                 SizeType;


  // ImageSource
  typedef itk::testhelper::ImageRegistrationMethodImageSource<
                                  FixedImageType::PixelType,
                                  MovingImageType::PixelType,
                                  dimension >         ImageSourceType;
  // Transform Type
  typedef itk::AffineTransform< double, dimension > TransformType;
  typedef TransformType::ParametersType             ParametersType;

  // Optimizer Type
  typedef itk::GradientDescentOptimizer                  OptimizerType;

  // Metric Type
  typedef itk::MeanSquaresImageToImageMetric<
                                    FixedImageType,
                                    MovingImageType >    MetricType;

  // Interpolation technique
  typedef itk:: LinearInterpolateImageFunction<
                                    MovingImageType,
                                    double >             InterpolatorType;

  // Registration Method
  typedef itk::ImageRegistrationMethod<
                                    FixedImageType,
                                    MovingImageType >    RegistrationType;

  typedef itk::CommandIterationUpdate<
                                  OptimizerType >    CommandIterationType;


  MetricType::Pointer         metric        = MetricType::New();
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  ImageSourceType::Pointer    imageSource   = ImageSourceType::New();

  SizeType size;
  size[0] = 100;
  size[1] = 100;

  imageSource->GenerateImages( size );

  FixedImageType::ConstPointer     fixedImage    = imageSource->GetFixedImage();
  MovingImageType::ConstPointer    movingImage   = imageSource->GetMovingImage();

  //
  // Connect all the components required for Registratio
  //
  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetFixedImage(    fixedImage    );
  registration->SetMovingImage(   movingImage   );
  registration->SetInterpolator(  interpolator  );


  // Select the Region of Interest over which the Metric will be computed
  // Registration time will be proportional to the number of pixels in this region.
  metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );

  // Instantiate an Observer to report the progress of the Optimization
  CommandIterationType::Pointer iterationCommand = CommandIterationType::New();
  iterationCommand->SetOptimizer(  optimizer.GetPointer() );

  // Scale the translation components of the Transform in the Optimizer
  OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
  scales.Fill( 1.0 );


  unsigned long   numberOfIterations =  100;
  double          translationScale   = 1e-6;
  double          learningRate       = 1e-8;

  if( argc > 1 )
    {
    numberOfIterations = atol( argv[1] );
    std::cout << "numberOfIterations = " << numberOfIterations << std::endl;
    }
  if( argc > 2 )
    {
    translationScale = atof( argv[2] );
    std::cout << "translationScale = " << translationScale << std::endl;
    }
  if( argc > 3 )
    {
    learningRate = atof( argv[3] );
    std::cout << "learningRate = " << learningRate << std::endl;
    }

  for( unsigned int i=0; i<dimension; i++)
    {
    scales[ i + dimension * dimension ] = translationScale;
    }

  optimizer->SetScales( scales );
  optimizer->SetLearningRate( learningRate );
  optimizer->SetNumberOfIterations( numberOfIterations );
  optimizer->MinimizeOn();

  // Start from an Identity transform (in a normal case, the user
  // can probably provide a better guess than the identity...
  transform->SetIdentity();
  registration->SetInitialTransformParameters( transform->GetParameters() );

  // Initialize the internal connections of the registration method.
  // This can potentially throw an exception
  try
    {
    registration->Update();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cerr << e << std::endl;
    pass = false;
    }

  ParametersType actualParameters = imageSource->GetActualParameters();
  ParametersType finalParameters  = registration->GetLastTransformParameters();

  const unsigned int numbeOfParameters = actualParameters.Size();

  // We know that for the Affine transform the Translation parameters are at
  // the end of the list of parameters.
  const unsigned int offsetOrder = finalParameters.Size()-actualParameters.Size();

  const double tolerance = 1.0;  // equivalent to 1 pixel.

  for(unsigned int i=0; i<numbeOfParameters; i++)
    {
    // the parameters are negated in order to get the inverse transformation.
    // this only works for comparing translation parameters....
    std::cout << finalParameters[i+offsetOrder] << " == " << -actualParameters[i] << std::endl;
    if( itk::Math::abs ( finalParameters[i+offsetOrder] - (-actualParameters[i]) ) > tolerance )
      {
      std::cout << "Tolerance exceeded at component " << i << std::endl;
      pass = false;
      }
    }

  //
  //  Get the transform as the Output of the Registration filter
  //
  RegistrationType::TransformOutputConstPointer transformDecorator =
                                                        registration->GetOutput();

  TransformType::ConstPointer finalTransform =
    static_cast< const TransformType * >( transformDecorator->Get() );


  if( !pass )
    {
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test PASSED." << std::endl;
  return EXIT_SUCCESS;


}