1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "itkImageRegistrationMethodImageSource.h"
/**
* This program tests one instantiation of the itk::ImageRegistrationMethod class
*
*
*/
int itkImageRegistrationMethodTest_1(int argc, char* argv[] )
{
bool pass = true;
const unsigned int dimension = 2;
// Fixed Image Type
typedef itk::Image<float,dimension> FixedImageType;
// Moving Image Type
typedef itk::Image<float,dimension> MovingImageType;
// Size Type
typedef MovingImageType::SizeType SizeType;
// ImageSource
typedef itk::testhelper::ImageRegistrationMethodImageSource<
FixedImageType::PixelType,
MovingImageType::PixelType,
dimension > ImageSourceType;
// Transform Type
typedef itk::AffineTransform< double, dimension > TransformType;
typedef TransformType::ParametersType ParametersType;
// Optimizer Type
typedef itk::GradientDescentOptimizer OptimizerType;
// Metric Type
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Interpolation technique
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// Registration Method
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
typedef itk::CommandIterationUpdate<
OptimizerType > CommandIterationType;
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
ImageSourceType::Pointer imageSource = ImageSourceType::New();
SizeType size;
size[0] = 100;
size[1] = 100;
imageSource->GenerateImages( size );
FixedImageType::ConstPointer fixedImage = imageSource->GetFixedImage();
MovingImageType::ConstPointer movingImage = imageSource->GetMovingImage();
//
// Connect all the components required for Registratio
//
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImage );
registration->SetInterpolator( interpolator );
// Select the Region of Interest over which the Metric will be computed
// Registration time will be proportional to the number of pixels in this region.
metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
// Instantiate an Observer to report the progress of the Optimization
CommandIterationType::Pointer iterationCommand = CommandIterationType::New();
iterationCommand->SetOptimizer( optimizer.GetPointer() );
// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
scales.Fill( 1.0 );
unsigned long numberOfIterations = 100;
double translationScale = 1e-6;
double learningRate = 1e-8;
if( argc > 1 )
{
numberOfIterations = atol( argv[1] );
std::cout << "numberOfIterations = " << numberOfIterations << std::endl;
}
if( argc > 2 )
{
translationScale = atof( argv[2] );
std::cout << "translationScale = " << translationScale << std::endl;
}
if( argc > 3 )
{
learningRate = atof( argv[3] );
std::cout << "learningRate = " << learningRate << std::endl;
}
for( unsigned int i=0; i<dimension; i++)
{
scales[ i + dimension * dimension ] = translationScale;
}
optimizer->SetScales( scales );
optimizer->SetLearningRate( learningRate );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->MinimizeOn();
// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();
registration->SetInitialTransformParameters( transform->GetParameters() );
// Initialize the internal connections of the registration method.
// This can potentially throw an exception
try
{
registration->Update();
}
catch( itk::ExceptionObject & e )
{
std::cerr << e << std::endl;
pass = false;
}
ParametersType actualParameters = imageSource->GetActualParameters();
ParametersType finalParameters = registration->GetLastTransformParameters();
const unsigned int numbeOfParameters = actualParameters.Size();
// We know that for the Affine transform the Translation parameters are at
// the end of the list of parameters.
const unsigned int offsetOrder = finalParameters.Size()-actualParameters.Size();
const double tolerance = 1.0; // equivalent to 1 pixel.
for(unsigned int i=0; i<numbeOfParameters; i++)
{
// the parameters are negated in order to get the inverse transformation.
// this only works for comparing translation parameters....
std::cout << finalParameters[i+offsetOrder] << " == " << -actualParameters[i] << std::endl;
if( itk::Math::abs ( finalParameters[i+offsetOrder] - (-actualParameters[i]) ) > tolerance )
{
std::cout << "Tolerance exceeded at component " << i << std::endl;
pass = false;
}
}
//
// Get the transform as the Output of the Registration filter
//
RegistrationType::TransformOutputConstPointer transformDecorator =
registration->GetOutput();
TransformType::ConstPointer finalTransform =
static_cast< const TransformType * >( transformDecorator->Get() );
if( !pass )
{
std::cout << "Test FAILED." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test PASSED." << std::endl;
return EXIT_SUCCESS;
}
|