File: itkImageRegistrationMethodTest_14.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (445 lines) | stat: -rw-r--r-- 13,990 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageRegistrationMethod.h"
#include "itkQuaternionRigidTransform.h"
#include "itkMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkQuaternionRigidTransformGradientDescentOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"

#include "itkTextOutput.h"
#include "itkCommandIterationUpdate.h"

namespace
{
double F( itk::Vector<double,3> & v );
}

/**
 *  This program test one instantiation of the itk::ImageRegistrationMethod class
 *
 *  This file tests the combination of:
 *   - MutualInformation
 *   - QuaternionRigidTransform
 *   - QuaternionRigidTransformGradientDescentOptimizer
 *   - LinearInterpolateImageFunction
 *
 *  The test image pattern consists of a 3D gaussian in the middle
 *  with some directional pattern on the outside.
 *  One image is rotated and shifted relative to the other.
 *
 * Notes
 * =====
 * This example performs an rigid registration
 * between a 3D fixed (target) image and 3D moving (source) image
 * using mutual information.
 * It uses the optimization method of Viola and Wells to find the
 * best rigid transform to register the moving image onto the fixed
 * image.
 *
 * The mutual information value and its derivatives are estimated
 * using spatial sampling. The performance
 * of the registration depends on good choices of the parameters
 * used to estimate the mutual information. Refer to the documentation
 * for MutualInformationImageToImageMetric for details on these
 * parameters and how to set them.
 *
 * The registration uses a simple stochastic gradient ascent scheme. Steps
 * are repeatedly taken that are proportional to the approximate
 * deriviative of the mutual information with respect to the rotation
 * transform parameters. The stepsize is governed by the LearningRate
 * parameter.
 *
 * In this example, the rigid transformation is represent by a vector
 * of 7 doubles. The first 4 parameters defines the
 * quaternion and the last 3 parameters the translation in each dimension.
 * Since the parameters of the rotation part is different in magnitude
 * to the parameters in the offset part, scaling is required
 * to improve convergence. The scaling can set via the optimizer.
 *
 * NB: In the Viola and Wells paper, the scaling is specified by
 * using different learning rates for the linear and offset part.
 * The following formula translate their scaling parameters to
 * those used in this framework:
 *
 * LearningRate = lambda_R
 * TranslationScale = sqrt( lambda_T / lambda_R );
 *
 * In the optimizer's scale transform set the scaling for
 * all the translation parameters to TranslationScale^{-2}.
 * Set the scale for all other parameters to 1.0.
 *
 * Note: the optimization performance can be improved by
 * setting the image origin to center of mass of the image.
 *
 * Implementaton of this class is based on:
 * Viola, P. and Wells III, W. (1997).
 * "Alignment by Maximization of Mutual Information"
 * International Journal of Computer Vision, 24(2):137-154
 *
 * Caveat: this exampe only work for 3D images
 *
 */

int itkImageRegistrationMethodTest_14(int, char* [] )
{
  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  bool pass = true;

  const unsigned int dimension = 3;
  unsigned int j;

  typedef float  PixelType;

  // Fixed Image Type
  typedef itk::Image<PixelType,dimension>               FixedImageType;

  // Moving Image Type
  typedef itk::Image<PixelType,dimension>               MovingImageType;

  // Transform Type
  typedef itk::QuaternionRigidTransform< double >       TransformType;

  // Optimizer Type
  typedef itk::QuaternionRigidTransformGradientDescentOptimizer
                                                         OptimizerType;

  // Metric Type
  typedef itk::MutualInformationImageToImageMetric<
                                    FixedImageType,
                                    MovingImageType >    MetricType;

  // Interpolation technique
  typedef itk:: LinearInterpolateImageFunction<
                                    MovingImageType,
                                    double          >    InterpolatorType;

  // Registration Method
  typedef itk::ImageRegistrationMethod<
                                    FixedImageType,
                                    MovingImageType >    RegistrationType;


  MetricType::Pointer         metric        = MetricType::New();
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  FixedImageType::Pointer     fixedImage    = FixedImageType::New();
  MovingImageType::Pointer    movingImage   = MovingImageType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  /*********************************************************
   * Set up the two input images.
   * One image rotated (xy plane) and shifted with respect to the other.
   **********************************************************/
  double displacement[dimension] = {7,3,2};
  double angle = 10.0 / 180.0 * itk::Math::pi;

  FixedImageType::SizeType size = {{100,100,40}};
  FixedImageType::IndexType index = {{0,0,0}};
  FixedImageType::RegionType region;
  region.SetSize( size );
  region.SetIndex( index );

  fixedImage->SetLargestPossibleRegion( region );
  fixedImage->SetBufferedRegion( region );
  fixedImage->SetRequestedRegion( region );
  fixedImage->Allocate();

  movingImage->SetLargestPossibleRegion( region );
  movingImage->SetBufferedRegion( region );
  movingImage->SetRequestedRegion( region );
  movingImage->Allocate();

  typedef itk::ImageRegionIterator<MovingImageType> MovingImageIterator;
  typedef itk::ImageRegionIterator<FixedImageType>  FixedImageIterator;

  itk::Point<double,dimension> center;
  for ( j = 0; j < dimension; j++ )
    {
    center[j] = 0.5 *  (double)region.GetSize()[j];
    }

  itk::Point<double,dimension> p;
  itk::Vector<double,dimension> d, d2;

  MovingImageIterator mIter( movingImage, region );
  FixedImageIterator  fIter( fixedImage, region );

  while( !mIter.IsAtEnd() )
    {
    for ( j = 0; j < dimension; j++ )
      {
      p[j] = mIter.GetIndex()[j];
      }

    d = p - center;

    fIter.Set( (PixelType) F(d) );


    d2[0] =  d[0] * std::cos(angle) + d[1] * std::sin(angle) + displacement[0];
    d2[1] = -d[0] * std::sin(angle) + d[1] * std::cos(angle) + displacement[1];
    d2[2] = d[2] + displacement[2];

    mIter.Set( (PixelType) F(d2) );

    ++fIter;
    ++mIter;

    }

  // set the image origin to be center of the image
  double transCenter[dimension];
  for ( j = 0; j < dimension; j++ )
    {
    transCenter[j] = -0.5 * double(size[j]);
    }

  movingImage->SetOrigin( transCenter );
  fixedImage->SetOrigin( transCenter );


  /******************************************************************
   * Set up the optimizer.
   ******************************************************************/

  // set the translation scale
  typedef OptimizerType::ScalesType ScalesType;
  ScalesType parametersScales( transform->GetNumberOfParameters() );

  parametersScales.Fill( 1.0 );

  for ( j = 4; j < 7; j++ )
    {
    parametersScales[j] = 0.0001;
    }

  optimizer->SetScales( parametersScales );

  // need to maximize for mutual information
  optimizer->MaximizeOn();

  /******************************************************************
   * Set up the optimizer observer
   ******************************************************************/
  typedef itk::CommandIterationUpdate< OptimizerType > CommandIterationType;
  CommandIterationType::Pointer iterationCommand =
    CommandIterationType::New();

  iterationCommand->SetOptimizer( optimizer );

  /******************************************************************
   * Set up the metric.
   ******************************************************************/
  metric->SetMovingImageStandardDeviation( 5.0 );
  metric->SetFixedImageStandardDeviation( 5.0 );
  metric->SetNumberOfSpatialSamples( 50 );
  metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
  metric->ReinitializeSeed(121212);

  /******************************************************************
   * Set up the registrator.
   ******************************************************************/

  // connect up the components
  registration->SetMetric( metric );
  registration->SetOptimizer( optimizer );
  registration->SetTransform( transform );
  registration->SetFixedImage( fixedImage );
  registration->SetMovingImage( movingImage );
  registration->SetInterpolator( interpolator );

  // set initial parameters to identity
  RegistrationType::ParametersType initialParameters(
    transform->GetNumberOfParameters() );

  initialParameters.Fill( 0.0 );
  initialParameters[3] = 1.0;


  /***********************************************************
   * Run the registration - reducing learning rate as we go
   ************************************************************/
  const unsigned int numberOfLoops = 3;
  unsigned int iter[numberOfLoops] = { 300, 300, 350 };
  double      rates[numberOfLoops] = { 1e-3, 5e-4, 1e-4 };

  for ( j = 0; j < numberOfLoops; j++ )
    {

    try
      {
        optimizer->SetNumberOfIterations( iter[j] );
        optimizer->SetLearningRate( rates[j] );
        registration->SetInitialTransformParameters( initialParameters );
        registration->Update();

        initialParameters = registration->GetLastTransformParameters();

      }
    catch( itk::ExceptionObject & e )
      {
      std::cout << "Registration failed" << std::endl;
      std::cout << "Reason " << e.GetDescription() << std::endl;
      return EXIT_FAILURE;
      }

    }


  /***********************************************************
   * Check the results
   ************************************************************/
  RegistrationType::ParametersType solution =
    registration->GetLastTransformParameters();

  std::cout << "Solution is: " << solution << std::endl;


  RegistrationType::ParametersType trueParameters(
    transform->GetNumberOfParameters() );
  trueParameters.Fill( 0.0 );
  trueParameters[2] =   std::sin( angle / 2.0 );
  trueParameters[3] =   std::cos( angle / 2.0 );
  trueParameters[4] = -1.0 * ( displacement[0] * std::cos(angle) -
                               displacement[1] * std::sin(angle) );
  trueParameters[5] = -1.0 * ( displacement[0] * std::sin(angle) +
                               displacement[1] * std::cos(angle) );
  trueParameters[6] = -1.0 * displacement[2];

  std::cout << "True solution is: " << trueParameters << std::endl;

  for( j = 0; j < 4; j++ )
    {
    if( itk::Math::abs( solution[j] - trueParameters[j] ) > 0.025 )
      {
      pass = false;
      }
    }
  for( j = 4; j < 7; j++ )
    {
    if( itk::Math::abs( solution[j] - trueParameters[j] ) > 1.0 )
      {
      pass = false;
      }
    }

  if( !pass )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  // exerise other methods
  transform->SetParameters( trueParameters );
  trueParameters = transform->GetParameters();

  /*************************************************
   * Check for parzen window exception
   **************************************************/
  double oldValue = metric->GetMovingImageStandardDeviation();
  metric->SetMovingImageStandardDeviation( 0.005 );

  try
    {
    pass = false;
    registration->Update();
    }
  catch(itk::ExceptionObject& err)
    {
    std::cout << "Caught expected ExceptionObject" << std::endl;
    std::cout << err << std::endl;
    pass = true;
    }

  if( !pass )
    {
    std::cout << "Should have caught an exception" << std::endl;
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  metric->SetMovingImageStandardDeviation( oldValue );


  /*************************************************
   * Check for mapped out of image error
   **************************************************/
  solution[5] = 1000;
  registration->SetInitialTransformParameters( solution );

  try
    {
    pass = false;
    registration->Update();
    }
  catch(itk::ExceptionObject& err)
    {
    std::cout << "Caught expected ExceptionObject" << std::endl;
    std::cout << err << std::endl;
    pass = true;
    }

  if( !pass )
    {
    std::cout << "Should have caught an exception" << std::endl;
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }


  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;


}

namespace
{
/**
 * This function defines the test image pattern.
 * The pattern is a 3D gaussian in the middle
 * and some directional pattern on the outside.
 */
double F( itk::Vector<double,3> & v )
{
  double x = v[0];
  double y = v[1];
  double z = v[2];
  const double s = 50;
  double value = 200.0 * std::exp( - ( x*x + y*y + z*z )/(s*s) );
  x -= 8; y += 3; z += 0;
  double r = std::sqrt( x*x + y*y + z*z );
  if( r > 35 )
    {
    value = 2 * ( itk::Math::abs( x ) +
      0.8 * itk::Math::abs( y ) +
      0.5 * itk::Math::abs( z ) );
    }
  if( r < 4 )
    {
    value = 400;
    }

  return value;

}
}