File: itkImageRegistrationMethodTest_15.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (374 lines) | stat: -rw-r--r-- 11,126 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageRegistrationMethod.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkGradientDescentOptimizer.h"

#include "itkTextOutput.h"
#include "itkCommandIterationUpdate.h"

namespace
{

double F( itk::Vector<double,3> & v );
}


/**
 *  This program test one instantiation of the itk::ImageRegistrationMethod class
 *
 *  This file tests the combination of:
 *   - MattesMutualInformation
 *   - AffineTransform
 *   - GradientDescentOptimizer
 *   - BSplineInterpolateImageFunction
 *
 *  The test image pattern consists of a 3D gaussian in the middle
 *  with some directional pattern on the outside.
 *  One image is scaled and shifted relative to the other.
 *
 * Notes:
 * =======
 * This example performs an affine registration
 * between a moving (source) and fixed (target) image using mutual information.
 * It uses a simple steepest descent optimizer to find the
 * best affine transform to register the moving image onto the fixed
 * image.
 *
 * The mutual information value and its derivatives are estimated
 * using spatial sampling.
 *
 * The registration uses a simple stochastic gradient ascent scheme. Steps
 * are repeatedly taken that are proportional to the approximate
 * deriviative of the mutual information with respect to the affine
 * transform parameters. The stepsize is governed by the LearningRate
 * parameter.
 *
 * Since the parameters of the linear part is different in magnitude
 * to the parameters in the offset part, scaling is required
 * to improve convergence. The scaling can set via the optimizer.
 *
 * In the optimizer's scale transform set the scaling for
 * all the translation parameters to TranslationScale^{-2}.
 * Set the scale for all other parameters to 1.0.
 *
 * Note: the optimization performance can be improved by
 * setting the image origin to center of mass of the image.
 *
 */
int itkImageRegistrationMethodTest_15(int, char* [] )
{

  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  bool pass = true;

  const unsigned int dimension = 3;
  unsigned int j;

  typedef float  PixelType;

  // Fixed Image Type
  typedef itk::Image<PixelType,dimension>               FixedImageType;

  // Moving Image Type
  typedef itk::Image<PixelType,dimension>               MovingImageType;

  // Transform Type
  typedef itk::AffineTransform< double,dimension >  TransformType;

  // Optimizer Type
  typedef itk::GradientDescentOptimizer             OptimizerType;

  // Metric Type
  typedef itk::MattesMutualInformationImageToImageMetric<
                                    FixedImageType,
                                    MovingImageType >    MetricType;

  // Interpolation technique
  typedef itk:: BSplineInterpolateImageFunction<
                                    MovingImageType,
                                    double          >    InterpolatorType;

  // Registration Method
  typedef itk::ImageRegistrationMethod<
                                    FixedImageType,
                                    MovingImageType >    RegistrationType;


  MetricType::Pointer         metric        = MetricType::New();
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  FixedImageType::Pointer     fixedImage    = FixedImageType::New();
  MovingImageType::Pointer    movingImage   = MovingImageType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  /*********************************************************
   * Set up the two input images.
   * One image scaled and shifted with respect to the other.
   **********************************************************/
  double displacement[dimension] = {3,1,1};
  double scale[dimension] = { 0.90, 1.0, 1.0 };

  FixedImageType::SizeType size = {{100,100,40}};
  FixedImageType::IndexType index = {{0,0,0}};
  FixedImageType::RegionType region;
  region.SetSize( size );
  region.SetIndex( index );

  fixedImage->SetLargestPossibleRegion( region );
  fixedImage->SetBufferedRegion( region );
  fixedImage->SetRequestedRegion( region );
  fixedImage->Allocate();

  movingImage->SetLargestPossibleRegion( region );
  movingImage->SetBufferedRegion( region );
  movingImage->SetRequestedRegion( region );
  movingImage->Allocate();


  typedef itk::ImageRegionIterator<MovingImageType> MovingImageIterator;
  typedef itk::ImageRegionIterator<FixedImageType>  FixedImageIterator;

  itk::Point<double,dimension> center;
  for ( j = 0; j < dimension; j++ )
    {
    center[j] = 0.5 *  (double)region.GetSize()[j];
    }

  itk::Point<double,dimension> p;
  itk::Vector<double,dimension> d;

  MovingImageIterator mIter( movingImage, region );
  FixedImageIterator  fIter( fixedImage, region );

  while( !mIter.IsAtEnd() )
    {
    for ( j = 0; j < dimension; j++ )
      {
      p[j] = mIter.GetIndex()[j];
      }

    d = p - center;

    fIter.Set( (PixelType) F(d) );

    for ( j = 0; j < dimension; j++ )
      {
      d[j] = d[j] * scale[j] + displacement[j];
      }

    mIter.Set( (PixelType) F(d) );

    ++fIter;
    ++mIter;

    }

  // set the image origin to be center of the image
  double transCenter[dimension];
  for ( j = 0; j < dimension; j++ )
    {
    transCenter[j] = -0.5 * double(size[j]);
    }

  movingImage->SetOrigin( transCenter );
  fixedImage->SetOrigin( transCenter );


  /******************************************************************
   * Set up the optimizer.
   ******************************************************************/

  // set the translation scale
  typedef OptimizerType::ScalesType ScalesType;
  ScalesType parametersScales( transform->GetNumberOfParameters() );

  parametersScales.Fill( 1.0 );

  for ( j = 9; j < 12; j++ )
    {
    parametersScales[j] = 0.0001;
    }

  optimizer->SetScales( parametersScales );
  optimizer->MaximizeOff();

  /******************************************************************
   * Set up the optimizer observer
   ******************************************************************/
  typedef itk::CommandIterationUpdate< OptimizerType > CommandIterationType;
  CommandIterationType::Pointer iterationCommand =
    CommandIterationType::New();

  iterationCommand->SetOptimizer( optimizer );

  /******************************************************************
   * Set up the metric.
   ******************************************************************/
  metric->SetNumberOfSpatialSamples( static_cast<unsigned long>(
    0.01 * fixedImage->GetBufferedRegion().GetNumberOfPixels() ) );

  metric->SetNumberOfHistogramBins( 50 );

  for( unsigned int jj = 0; jj < dimension; jj++ )
    {
    size[jj] -= 4;
    index[jj] += 2;
    }
  region.SetSize( size );
  region.SetIndex( index );
  metric->SetFixedImageRegion( region );
  metric->ReinitializeSeed(121212);

  /******************************************************************
   * Set up the registrator.
   ******************************************************************/

  // connect up the components
  registration->SetMetric( metric );
  registration->SetOptimizer( optimizer );
  registration->SetTransform( transform );
  registration->SetFixedImage( fixedImage );
  registration->SetMovingImage( movingImage );
  registration->SetInterpolator( interpolator );

  // set initial parameters to identity
  RegistrationType::ParametersType initialParameters(
    transform->GetNumberOfParameters() );

  initialParameters.Fill( 0.0 );
  initialParameters[0] = 1.0;
  initialParameters[4] = 1.0;
  initialParameters[8] = 1.0;


  /***********************************************************
   * Run the registration
   ************************************************************/
  const unsigned int numberOfLoops = 2;
  unsigned int iter[numberOfLoops] = { 50, 0 };
  double      rates[numberOfLoops] = { 1e-3, 5e-4 };


  for ( j = 0; j < numberOfLoops; j++ )
    {

    try
      {
        optimizer->SetNumberOfIterations( iter[j] );
        optimizer->SetLearningRate( rates[j] );
        registration->SetInitialTransformParameters( initialParameters );
        registration->Update();

        initialParameters = registration->GetLastTransformParameters();

      }
    catch( itk::ExceptionObject & e )
      {
      std::cout << "Registration failed" << std::endl;
      std::cout << "Reason " << e.GetDescription() << std::endl;
      return EXIT_FAILURE;
      }

    }


  /***********************************************************
   * Check the results
   ************************************************************/
  RegistrationType::ParametersType solution =
    registration->GetLastTransformParameters();

  std::cout << "Solution is: " << solution << std::endl;


  RegistrationType::ParametersType trueParameters(
    transform->GetNumberOfParameters() );
  trueParameters.Fill( 0.0 );
  trueParameters[ 0] = 1/scale[0];
  trueParameters[ 4] = 1/scale[1];
  trueParameters[ 8] = 1/scale[2];
  trueParameters[ 9] = - displacement[0]/scale[0];
  trueParameters[10] = - displacement[1]/scale[1];
  trueParameters[11] = - displacement[2]/scale[2];

  std::cout << "True solution is: " << trueParameters << std::endl;

  for( j = 0; j < 9; j++ )
    {
    if( itk::Math::abs( solution[j] - trueParameters[j] ) > 0.025 )
      {
      pass = false;
      }
    }
  for( j = 9; j < 12; j++ )
    {
    if( itk::Math::abs( solution[j] - trueParameters[j] ) > 1.0 )
      {
      pass = false;
      }
    }

  if( !pass )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }


  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;


}
namespace
{


/**
 * This function defines the test image pattern.
 * The pattern is a 3D gaussian in the middle
 * and some directional pattern on the outside.
 */
double F( itk::Vector<double,3> & v )
{
  double x = v[0];
  double y = v[1];
  double z = v[2];
  const double s = 50;
  double value = 200.0 * std::exp( - ( x*x + y*y + z*z )/(s*s) );
  x -= 8; y += 3; z += 0;
  double r = std::sqrt( x*x + y*y + z*z );
  if( r > 35 )
    {
    value = 2 * ( itk::Math::abs( x ) +
      0.8 * itk::Math::abs( y ) +
      0.5 * itk::Math::abs( z ) );
    }
  if( r < 4 )
    {
    value = 400;
    }

  return value;

}
}