1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkTextOutput.h"
#include "itkBSplineTransform.h"
#include "itkImageMaskSpatialObject.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
/**
* This templated function test the MattesMutualInformationImageToMetric
* class using an AfffineTransform and various interpolators.
*
* This test uses two 2D-Gaussians (standard deviation RegionSize/2)
* One is shifted by 5 pixels from the other.
*
* This test computes the mutual information value and derivatives
* for various shift values in (-10,10). Then it checks the numerical
* accuracy of computed derivatives by perturbing parameters by
* delta = 0.001.
*
*
*/
template< typename TImage, typename TInterpolator>
int TestMattesMetricWithAffineTransform(
TInterpolator * interpolator, bool useSampling,
bool useExplicitJointPDFDerivatives, bool useCachingBSplineWeights )
{
//------------------------------------------------------------
// Create two simple images
//------------------------------------------------------------
//Allocate Images
typedef TImage MovingImageType;
typedef TImage FixedImageType;
enum { ImageDimension = MovingImageType::ImageDimension };
typename MovingImageType::SizeType size = {{100,100}};
typename MovingImageType::IndexType index = {{0,0}};
typename MovingImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
typename MovingImageType::SpacingType imgSpacing;
imgSpacing[0] = 3.0;
imgSpacing[1] = 2.0;
typename MovingImageType::PointType imgOrigin;
imgOrigin[0] = 0.0;
imgOrigin[1] = 0.0;
typename MovingImageType::Pointer imgMoving = MovingImageType::New();
imgMoving->SetLargestPossibleRegion( region );
imgMoving->SetBufferedRegion( region );
imgMoving->SetRequestedRegion( region );
imgMoving->Allocate();
imgMoving->SetSpacing( imgSpacing );
imgMoving->SetOrigin( imgOrigin );
typename FixedImageType::Pointer imgFixed = FixedImageType::New();
imgFixed->SetLargestPossibleRegion( region );
imgFixed->SetBufferedRegion( region );
imgFixed->SetRequestedRegion( region );
imgFixed->Allocate();
imgFixed->SetSpacing( imgSpacing );
imgFixed->SetOrigin( imgOrigin );
// Fill images with a 2D gaussian
typedef itk::ImageRegionIterator<MovingImageType>
ReferenceIteratorType;
typedef itk::ImageRegionIterator<FixedImageType>
TargetIteratorType;
itk::Point<double,2> center;
center[0] = (double)region.GetSize()[0]/2.0;
center[1] = (double)region.GetSize()[1]/2.0;
const double s = (double)region.GetSize()[0]/2.0;
itk::Point<double,2> p;
itk::Vector<double,2> d;
// Set the displacement
itk::Vector<double,2> displacement;
displacement[0] = 5;
displacement[1] = 5;
ReferenceIteratorType ri(imgMoving,region);
TargetIteratorType ti(imgFixed,region);
ri.GoToBegin();
while(!ri.IsAtEnd())
{
p[0] = ri.GetIndex()[0];
p[1] = ri.GetIndex()[1];
d = p-center;
d += displacement;
const double x = d[0];
const double y = d[1];
ri.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ri;
}
ti.GoToBegin();
while(!ti.IsAtEnd())
{
p[0] = ti.GetIndex()[0];
p[1] = ti.GetIndex()[1];
d = p-center;
const double x = d[0];
const double y = d[1];
ti.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ti;
}
//Setup a fixed image mask for the image
typename MovingImageType::Pointer imgMovingMask = MovingImageType::New();
imgMovingMask->CopyInformation(imgMoving);
imgMovingMask->SetRegions(region);
imgMovingMask->Allocate(true); // initialize
// buffer to zero
typename FixedImageType::Pointer imgFixedMask = FixedImageType::New();
imgFixedMask->CopyInformation(imgFixed);
imgFixedMask->SetRegions(region);
imgFixedMask->Allocate(true); // initialize
// buffer to zero
int NumberFixedImageMaskVoxels=0;
{//Set up a mask that only has every 10th voxel listed is used in fixed image region
//This should result in only about 588 samples
{
ReferenceIteratorType ri1(imgMovingMask,region);
ri1.GoToBegin();
while(!ri1.IsAtEnd()) //Set all moving mask voxels to 1
{
ri1.Set(1);
++ri1;
}
}
{
int count=0;
TargetIteratorType ti1(imgFixedMask,region);
ti1.GoToBegin();
while(!ti1.IsAtEnd())//Set a subset of fixed mask voxels to 1, so that requested number can be made more than possible number
{
if(count%17 == 0)
{
ti1.Set(1);
++NumberFixedImageMaskVoxels;
}
count++;
++ti1;
}
}
}
//-----------------------------------------------------------
// Set up a transformer
//-----------------------------------------------------------
typedef itk::AffineTransform< double, ImageDimension > TransformType;
typedef typename TransformType::ParametersType ParametersType;
typename TransformType::Pointer transformer = TransformType::New();
//------------------------------------------------------------
// Set up the metric
//------------------------------------------------------------
typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType, MovingImageType > MetricType;
typename MetricType::Pointer metric = MetricType::New();
// Sanity check before metric is run, these should be ITK_NULLPTR;
if( metric->GetJointPDFDerivatives().IsNotNull() )
{
return EXIT_FAILURE;
}
if( metric->GetJointPDF().IsNotNull() )
{
return EXIT_FAILURE;
}
// connect the interpolator
metric->SetInterpolator( interpolator );
// connect the transform
metric->SetTransform( transformer );
// connect the images to the metric
metric->SetFixedImage( imgFixed );
metric->SetMovingImage( imgMoving );
// set the number of histogram bins
metric->SetNumberOfHistogramBins( 50 );
metric->SetUseExplicitPDFDerivatives( useExplicitJointPDFDerivatives );
metric->SetUseCachingOfBSplineWeights( useCachingBSplineWeights );
metric->ReinitializeSeed(121212);
if( useSampling )
{
// set the number of samples to use
//metric->SetNumberOfSpatialSamples( 500 );
{
// NOTE: This number of spatial samples is to be larger than possible
// and it will be truncated to the size of the image.
// convert mask image to mask
typedef itk::ImageMaskSpatialObject<ImageDimension> ImageMaskSpatialObjectType;
typename ImageMaskSpatialObjectType::Pointer soMovingMask = ImageMaskSpatialObjectType::New();
soMovingMask->SetImage( imgMovingMask );
soMovingMask->ComputeObjectToWorldTransform();
typename ImageMaskSpatialObjectType::Pointer soFixedMask = ImageMaskSpatialObjectType::New();
soFixedMask->SetImage( imgFixedMask );
soFixedMask->ComputeObjectToWorldTransform();
metric->SetMovingImageMask(soMovingMask);
metric->SetFixedImageMask(soFixedMask);
// Make the mask const to enhance code coverage
typename ImageMaskSpatialObjectType::ConstPointer soMovingConstMask = soMovingMask.GetPointer();
typename ImageMaskSpatialObjectType::ConstPointer soFixedConstMask = soFixedMask.GetPointer();
metric->SetMovingImageMask(soMovingConstMask);
metric->SetFixedImageMask(soFixedConstMask);
//metric->SetNumberOfSpatialSamples( static_cast<unsigned long int>(NumberFixedImageMaskVoxels*.2) );
metric->SetNumberOfSpatialSamples( static_cast<unsigned long int>(NumberFixedImageMaskVoxels*2) );
}
}
else
{
metric->UseAllPixelsOn();
}
// set the region over which to compute metric
index.Fill(2);
size.Fill(96);
region.SetSize( size );
region.SetIndex( index );
metric->SetFixedImageRegion( region );
// initialize the metric before use
metric->DebugOn();
metric->Initialize();
metric->DebugOff();
//------------------------------------------------------------
// Set up a affine transform parameters
//------------------------------------------------------------
unsigned int numberOfParameters = transformer->GetNumberOfParameters();
ParametersType parameters( numberOfParameters );
// set the parameters to the identity
unsigned long count = 0;
// initialize the linear/matrix part
for( unsigned int row = 0; row < ImageDimension; row++ )
{
for( unsigned int col = 0; col < ImageDimension; col++ )
{
parameters[count] = 0;
if( row == col )
{
parameters[count] = 1;
}
++count;
}
}
// initialize the offset/vector part
for( unsigned int k = 0; k < ImageDimension; k++ )
{
parameters[count] = 0;
++count;
}
//---------------------------------------------------------
// Print out mutual information values
// for parameters[4] = {-10,10} (arbitrary choice)
//---------------------------------------------------------
typename MetricType::MeasureType measure, measure2;
typename MetricType::DerivativeType derivative( numberOfParameters );
std::cout << "param[4]\tMI\tMI2\tdMI/dparam[4]" << std::endl;
for( double trans = -10; trans <= 5; trans += 0.5 )
{
parameters[4] = trans;
metric->GetValueAndDerivative( parameters, measure, derivative );
measure2 = metric->GetValue( parameters );
std::cout << trans << "\t" << measure << "\t" <<
measure2 << "\t" << derivative[4] <<std::endl;
// exercise the other functions
metric->GetDerivative( parameters, derivative );
}
//---------------------------------------------------------
// Check output gradients for numerical accuracy
//---------------------------------------------------------
parameters[4] = 0;
metric->GetValueAndDerivative( parameters, measure, derivative );
ParametersType parametersPlus( numberOfParameters );
ParametersType parametersMinus( numberOfParameters );
typename MetricType::MeasureType measurePlus;
typename MetricType::MeasureType measureMinus;
double delta = 0.001;
bool testFailed = false;
for( unsigned int i = 0; i < numberOfParameters; ++i )
{
//copy the parameters and perturb the current one.
for( unsigned int j = 0; j < numberOfParameters; ++j )
{
if( j == i )
{
parametersPlus[j] = parameters[i] + delta; //positive perturbation
parametersMinus[j] = parameters[i] - delta; //negative perturbation
}
else
{
parametersPlus[j] = parameters[j];
parametersMinus[j] = parameters[j];
}
}
measurePlus = metric->GetValue( parametersPlus );
measureMinus = metric->GetValue( parametersMinus );
double approxDerivative = ( measurePlus - measureMinus ) / ( 2 * delta );
double ratio = derivative[i]/approxDerivative;
std::cout << i << "\t";
std::cout << parameters[i] << "\t";
std::cout << derivative[i] << "\t";
std::cout << approxDerivative << "\t";
std::cout << ratio << "\t";
std::cout << std::endl;
if ( itk::Math::abs( ratio - 1.0 ) > 0.012 )
{
std::cout << "computed derivative differ from central difference." << std::endl;
testFailed = true;
}
}
if( testFailed )
{
return EXIT_FAILURE;
}
//-------------------------------------------------------
// exercise misc member functions
//-------------------------------------------------------
std::cout << "Name of class: " <<
metric->GetNameOfClass() << std::endl;
std::cout << "No. of samples used = " <<
metric->GetNumberOfSpatialSamples() << std::endl;
std::cout << "No. of histogram bin used = " <<
metric->GetNumberOfHistogramBins() << std::endl;
if( metric->GetJointPDF().IsNotNull() )
{
std::cout << "JointPDF image info: " <<
metric->GetJointPDF() << std::endl;
}
if( metric->GetJointPDFDerivatives().IsNotNull() )
{
std::cout << "JointPDFDerivative image info: " <<
metric->GetJointPDFDerivatives() << std::endl;
}
metric->Print(std::cout);
return EXIT_SUCCESS;
}
/**
* This templated function test the MattesMutualInformationImageToMetric
* class using an BSplineTransform and various interpolators.
*
* This test uses two 2D-Gaussians (standard deviation RegionSize/2)
* One is shifted by 5 pixels from the other.
*
* This test computes the mutual information value and derivatives
* for various shift values in (-10,10).
*
*
*/
template< typename TImage, typename TInterpolator>
int TestMattesMetricWithBSplineTransform(
TInterpolator * interpolator, bool useSampling,
bool useExplicitJointPDFDerivatives, bool useCachingBSplineWeights )
{
//------------------------------------------------------------
// Create two simple images
//------------------------------------------------------------
//Allocate Images
typedef TImage MovingImageType;
typedef TImage FixedImageType;
enum { ImageDimension = MovingImageType::ImageDimension };
typename MovingImageType::SizeType size = {{100,100}};
typename MovingImageType::IndexType index = {{0,0}};
typename MovingImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
typename MovingImageType::SpacingType imgSpacing;
imgSpacing[0] = 1.5;
imgSpacing[1] = 1.5;
typename MovingImageType::PointType imgOrigin;
imgOrigin[0] = 0.0;
imgOrigin[1] = 0.0;
typename MovingImageType::Pointer imgMoving = MovingImageType::New();
imgMoving->SetLargestPossibleRegion( region );
imgMoving->SetBufferedRegion( region );
imgMoving->SetRequestedRegion( region );
imgMoving->Allocate();
imgMoving->SetSpacing( imgSpacing );
imgMoving->SetOrigin( imgOrigin );
typename FixedImageType::Pointer imgFixed = FixedImageType::New();
imgFixed->SetLargestPossibleRegion( region );
imgFixed->SetBufferedRegion( region );
imgFixed->SetRequestedRegion( region );
imgFixed->Allocate();
imgFixed->SetSpacing( imgSpacing );
imgFixed->SetOrigin( imgOrigin );
// Fill images with a 2D gaussian
typedef itk::ImageRegionIterator<MovingImageType>
ReferenceIteratorType;
typedef itk::ImageRegionIterator<FixedImageType>
TargetIteratorType;
itk::Point<double,2> center;
center[0] = (double)region.GetSize()[0]/2.0;
center[1] = (double)region.GetSize()[1]/2.0;
const double s = (double)region.GetSize()[0]/2.0;
itk::Point<double,2> p;
itk::Vector<double,2> d;
// Set the displacement
itk::Vector<double,2> displacement;
displacement[0] = 5;
displacement[1] = 5;
ReferenceIteratorType ri(imgMoving,region);
TargetIteratorType ti(imgFixed,region);
ri.GoToBegin();
while(!ri.IsAtEnd())
{
p[0] = ri.GetIndex()[0];
p[1] = ri.GetIndex()[1];
d = p-center;
d += displacement;
const double x = d[0];
const double y = d[1];
ri.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ri;
}
ti.GoToBegin();
while(!ti.IsAtEnd())
{
p[0] = ti.GetIndex()[0];
p[1] = ti.GetIndex()[1];
d = p-center;
const double x = d[0];
const double y = d[1];
ti.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ti;
}
//-----------------------------------------------------------
// Set up a transformer
//-----------------------------------------------------------
typedef itk::BSplineTransform< double, ImageDimension, 3 > TransformType;
typedef typename TransformType::ParametersType ParametersType;
typename TransformType::PhysicalDimensionsType dimensions;
for( unsigned int dim = 0; dim < ImageDimension; dim++ )
{
dimensions[dim] = imgFixed->GetSpacing()[dim] *
( imgFixed->GetLargestPossibleRegion().GetSize()[dim] - 1 );
}
typename TransformType::MeshSizeType meshSize;
meshSize.Fill( 4 );
typename TransformType::Pointer transformer = TransformType::New();
transformer->SetTransformDomainPhysicalDimensions( dimensions );
transformer->SetTransformDomainOrigin( imgFixed->GetOrigin() );
transformer->SetTransformDomainDirection( imgFixed->GetDirection() );
transformer->SetTransformDomainMeshSize( meshSize );
transformer->Print( std::cout );
//------------------------------------------------------------
// Set up the metric
//------------------------------------------------------------
typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType, MovingImageType > MetricType;
typename MetricType::Pointer metric = MetricType::New();
// connect the interpolator
metric->SetInterpolator( interpolator );
// connect the transform
metric->SetTransform( transformer );
// connect the images to the metric
metric->SetFixedImage( imgFixed );
metric->SetMovingImage( imgMoving );
// set the number of histogram bins
metric->SetNumberOfHistogramBins( 50 );
metric->SetUseExplicitPDFDerivatives( useExplicitJointPDFDerivatives );
metric->SetUseCachingOfBSplineWeights( useCachingBSplineWeights );
if( useSampling )
{
// set the number of samples to use
metric->SetNumberOfSpatialSamples( 500 );
}
else
{
metric->UseAllPixelsOn();
}
// set the region over which to compute metric
metric->SetFixedImageRegion( imgFixed->GetBufferedRegion() );
// initialize the metric before use
metric->Initialize();
//------------------------------------------------------------
// Set up a B-spline deformable transform parameters
//------------------------------------------------------------
unsigned int numberOfParameters = transformer->GetNumberOfParameters();
ParametersType parameters( numberOfParameters );
parameters.Fill( 0.0 );
//---------------------------------------------------------
// Print out mutual information values
// for parameters between {-10,10} (arbitrary choice)
//---------------------------------------------------------
typename MetricType::MeasureType measure, measure2;
typename MetricType::DerivativeType derivative( numberOfParameters );
unsigned int q = numberOfParameters / 4;
std::cout << "q = " << q << std::endl;
std::cout << "param[q]\tMI\tMI2\tdMI/dparam[q]" << std::endl;
for( double trans = -10; trans <= 5; trans += 0.5 )
{
// parameters[q] = trans;
parameters.Fill( trans );
metric->GetValueAndDerivative( parameters, measure, derivative );
measure2 = metric->GetValue( parameters );
std::cout << trans << "\t" << measure << "\t" <<
measure2 << "\t" << derivative[q] <<std::endl;
// exercise the other functions
metric->GetDerivative( parameters, derivative );
}
//---------------------------------------------------------
// Check output gradients for numerical accuracy
//---------------------------------------------------------
parameters.Fill( 4.5 * imgSpacing[0] );
metric->GetValueAndDerivative( parameters, measure, derivative );
ParametersType parametersPlus( numberOfParameters );
ParametersType parametersMinus( numberOfParameters );
typename MetricType::MeasureType measurePlus;
typename MetricType::MeasureType measureMinus;
double delta = 0.1 * imgSpacing[0];
bool testFailed = false;
for( unsigned int i = 0; i < numberOfParameters; ++i )
{
//copy the parameters and perturb the current one.
for( unsigned int j = 0; j < numberOfParameters; ++j )
{
if( j == i )
{
parametersPlus[j] = parameters[i] + delta; //positive perturbation
parametersMinus[j] = parameters[i] - delta; //negative perturbation
}
else
{
parametersPlus[j] = parameters[j];
parametersMinus[j] = parameters[j];
}
}
measurePlus = metric->GetValue( parametersPlus );
const unsigned long numberPlusSamples= metric->GetNumberOfMovingImageSamples();
measureMinus = metric->GetValue( parametersMinus );
const unsigned long numberMinusSamples= metric->GetNumberOfMovingImageSamples();
//Test was failing due to some +-perturbed points viewed as
//"inside", while -=perturbed points were outside, and
//vice-versa. This logic ensures that such points are excluded
//from the test.
if ( numberPlusSamples!= numberMinusSamples)
{
continue;
}
double approxDerivative = ( measurePlus - measureMinus ) / ( 2 * delta );
double ratio = derivative[i]/approxDerivative;
std::cout << i << "\t";
std::cout << parameters[i] << "\t";
std::cout << derivative[i] << "\t";
std::cout << approxDerivative << "\t";
std::cout << ratio << "\t";
std::cout << std::endl;
if ( itk::Math::abs( ratio - 1.0 ) > 0.05 && itk::Math::abs( derivative[i] ) > 1e-4 )
{
std::cout << "computed derivative differ from central difference." << std::endl;
testFailed = true;
}
}
if( testFailed )
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
int itkMattesMutualInformationImageToImageMetricTest(int argc, char * argv [] )
{
bool useExplicitJointPDFDerivatives = true;
bool useCachingBSplineWeights = true;
if( argc > 1 )
{
useExplicitJointPDFDerivatives = atoi( argv[1] );
}
if( argc > 2 )
{
useCachingBSplineWeights = atoi( argv[2] );
}
int failed;
typedef itk::Image<unsigned char,2> ImageType;
bool useSampling = true;
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
// Test metric with a linear interpolator
typedef itk::LinearInterpolateImageFunction< ImageType, double >
LinearInterpolatorType;
LinearInterpolatorType::Pointer linearInterpolator
= LinearInterpolatorType::New();
failed = TestMattesMetricWithAffineTransform<ImageType,LinearInterpolatorType>(
linearInterpolator, useSampling, useExplicitJointPDFDerivatives, useCachingBSplineWeights );
if ( failed )
{
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
useSampling = false;
failed = TestMattesMetricWithAffineTransform<ImageType,LinearInterpolatorType>(
linearInterpolator, useSampling, useExplicitJointPDFDerivatives, useCachingBSplineWeights );
if ( failed )
{
std::cout << "Test failed when using all the pixels instead of sampling" << std::endl;
return EXIT_FAILURE;
}
// Test metric with a BSpline interpolator
typedef itk::BSplineInterpolateImageFunction< ImageType, double >
BSplineInterpolatorType;
BSplineInterpolatorType::Pointer bSplineInterpolator
= BSplineInterpolatorType::New();
bSplineInterpolator->SetSplineOrder( 3 );
useSampling = true;
failed = TestMattesMetricWithAffineTransform<ImageType,BSplineInterpolatorType>(
bSplineInterpolator, useSampling, useExplicitJointPDFDerivatives, useCachingBSplineWeights );
if ( failed )
{
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
useSampling = false;
failed = TestMattesMetricWithAffineTransform<ImageType,BSplineInterpolatorType>(
bSplineInterpolator, useSampling, useExplicitJointPDFDerivatives, useCachingBSplineWeights );
if ( failed )
{
std::cout << "Test failed when using all the pixels instead of sampling" << std::endl;
return EXIT_FAILURE;
}
// Test metric with BSpline deformable transform
useSampling = true;
failed = TestMattesMetricWithBSplineTransform<
ImageType,BSplineInterpolatorType>( bSplineInterpolator, useSampling,
useExplicitJointPDFDerivatives, useCachingBSplineWeights );
if ( failed )
{
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
// Test metric with BSpline deformable transform and using all the pixels
//
// We know this test particular combination is not working yet,
// but we left the test here in order to help with the debugging.
//
/*
std::cout << "Test metric with BSpline deformable transform and using all the pixels" << std::endl;
useSampling = false;
failed = TestMattesMetricWithBSplineTransform<
ImageType,BSplineInterpolatorType>( bSplineInterpolator, useSampling );
if ( failed )
{
std::cout << "Test failed when using all the pixels instead of sampling" << std::endl;
return EXIT_FAILURE;
}
*/
std::cout << "Test passed" << std::endl;
return EXIT_SUCCESS;
}
|