File: itkMultiResolutionPyramidImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (420 lines) | stat: -rw-r--r-- 13,221 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkRecursiveMultiResolutionPyramidImageFilter.h"
#include "itkMath.h"

#include <iostream>

namespace
{

/**
 * This function defines the test image pattern.
 * The pattern is a 3D gaussian in the middle
 * and some directional pattern on the outside.
 */
double F( double x, double y, double z )
{
  const double s = 50;
  double value = 200.0 * std::exp( - ( x*x + y*y + z*z )/(s*s) );
  x -= 8; y += 3; z += 0;
  double r = std::sqrt( x*x + y*y + z*z );
  if( r > 35 )
    {
    value = 2 * ( itk::Math::abs( x ) +
      0.8 * itk::Math::abs( y ) +
      0.5 * itk::Math::abs( z ) );
    }
  if( r < 4 )
    {
    value = 400;
    }

  return value;

}


// The following three classes are used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
  ShowProgressObject(itk::ProcessObject* o)
    {m_Process = o;}
  void ShowProgress()
    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
  itk::ProcessObject::Pointer m_Process;
};
}

#include "itkImageMomentsCalculator.h"
template <typename ImageType>
typename ImageType::PointType GetCenterOfMass(const ImageType * volume)
{
  typename ImageType::PointType CenterOfMass;
    {
    typedef itk::ImageMomentsCalculator<ImageType> momentsCalculatorType;
    typename momentsCalculatorType::Pointer moments=momentsCalculatorType::New();
    moments->SetImage(volume);
    moments->Compute();
    typename ImageType::PointType::VectorType tempCenterOfMass=moments->GetCenterOfGravity();
    for( unsigned int q=0;q<ImageType::ImageDimension;q++ )
      {
      CenterOfMass[q]=tempCenterOfMass[q];
      }
    }
  return  CenterOfMass;
}

int itkMultiResolutionPyramidImageFilterTest(int argc, char* argv[] )
{

//------------------------------------------------------------
// Create a simple image
//------------------------------------------------------------

  // Allocate Images
  typedef float                   PixelType;
  typedef itk::Image<PixelType,3> InputImageType;
  typedef itk::Image<float,3>     OutputImageType;
  enum { ImageDimension = InputImageType::ImageDimension };
  bool useShrinkFilter(false);
  if(argc > 1)
    {
    std::string s(argv[1]);
    std::cout << "useShrinkFilter ";
    if(s == "Shrink")
      {
      useShrinkFilter = true;
      std::cout << "true";
      }
    else
      {
      std::cout << "false";
      }
    std::cout << std::endl;
    }
  bool TestRecursive(false);
  if(argc > 2)
    {
    std::string s(argv[2]);
    if(s == "TestRecursive")
      {
      TestRecursive = true;
      }
    }
  //At best center of mass can be preserved very closely only when
  //shrink factors divisible into the original image size
  //are used, so only test that option.
  //When shrink factors are not divisible, this still does
  //a best does the best possible job.
  //InputImageType::SizeType size = {{101,101,41}};
  InputImageType::SizeType size = {{128,132,48}};
  InputImageType::IndexType index = {{0,0,0}};
  InputImageType::RegionType region;
  region.SetSize( size );
  region.SetIndex( index );

  InputImageType::SpacingType spacing;
  spacing[0]=0.5;
  spacing[1]=2.7;
  spacing[2]=7.5;

  InputImageType::DirectionType direction;
  direction.Fill(0.0);
  direction[0][1]=-1;
  direction[1][2]=1;
  direction[2][0]=1;

  InputImageType::Pointer imgTarget = InputImageType::New();
  imgTarget->SetLargestPossibleRegion( region );
  imgTarget->SetBufferedRegion( region );
  imgTarget->SetRequestedRegion( region );
  imgTarget->SetSpacing( spacing );
  imgTarget->SetDirection( direction );
  imgTarget->Allocate();

  // Fill images with a 3D gaussian with some directional pattern
  // in the background
  typedef  itk::ImageRegionIterator<InputImageType> Iterator;

  itk::Point<double,3> center;
  center[0] = (double)region.GetSize()[0]/2.0;
  center[1] = (double)region.GetSize()[1]/2.0;
  center[2] = (double)region.GetSize()[2]/2.0;

  itk::Point<double,3>  p;
  itk::Vector<double,3> d;

  Iterator ti(imgTarget,region);


  while(!ti.IsAtEnd())
  {
    p[0] = ti.GetIndex()[0];
    p[1] = ti.GetIndex()[1];
    p[2] = ti.GetIndex()[2];
    d = p-center;
    const double x = d[0];
    const double y = d[1];
    const double z = d[2];
    ti.Set( (PixelType) F(x,y,z) );
    ++ti;
  }

  // set image origin to be center of the image
  double transCenter[3];
  unsigned int j, k;
  for( j = 0; j < 3; j++ )
    {
    transCenter[j] = -0.5 * double(size[j])*spacing[j];
    }
  imgTarget->SetOrigin( transCenter );


 /**
  * Setup a multi-resolution pyramid
  */
  typedef itk::MultiResolutionPyramidImageFilter<InputImageType,OutputImageType>
                                    PyramidType;
  typedef PyramidType::ScheduleType ScheduleType;
  /**
   * This is kind of cheating but it exploits the fact that Recursive... is derived
   * from Multi... so it just swaps classes based on a command line flag. hey presto!
   * new test!
   */
  PyramidType::Pointer pyramid;
  if(!TestRecursive)
    {
    pyramid = PyramidType::New();
    }
  else
    {
    pyramid =
      itk::RecursiveMultiResolutionPyramidImageFilter<InputImageType,OutputImageType>::New();
    }
  pyramid->SetUseShrinkImageFilter(useShrinkFilter);
  pyramid->SetInput( imgTarget );

  unsigned int numLevels;
  itk::Vector<unsigned int,ImageDimension> factors;

  // set schedule by specifying the number of levels;
  numLevels = 3;
  factors.Fill( 1 << (numLevels - 1) );
  pyramid->SetNumberOfLevels( numLevels );

  // check the schedule
  ScheduleType schedule( numLevels, ImageDimension );

  for( k = 0; k < numLevels; k++ )
    {
    unsigned int denominator = 1 << k;
    for( j = 0; j < ImageDimension; j++ )
      {
      schedule[k][j] = factors[j] / denominator;
      if( schedule[k][j] == 0 )
        {
        schedule[k][j] = 1;
        }
      }
    }

  if( schedule != pyramid->GetSchedule() )
    {
    std::cout << "Schedule should be: " << std::endl;
    std::cout << schedule << std::endl;
    std::cout << "instead of: " << std::endl;
    std::cout << pyramid->GetSchedule();
    return EXIT_FAILURE;
    }

  // set schedule by specifying the starting shrink factors
  numLevels = 4;
  factors[0] = 8; factors[1] = 4; factors[2] = 2;
  pyramid->SetNumberOfLevels( numLevels );
  pyramid->SetStartingShrinkFactors( factors.Begin() );

  // check the schedule;
  ScheduleType temp( numLevels, ImageDimension );
  temp.Fill(0);
  schedule = temp;
  for( k = 0; k < numLevels; k++ )
    {
    unsigned int denominator = 1 << k;
    for( j = 0; j < ImageDimension; j++ )
      {
      schedule[k][j] = factors[j] / denominator;
      if( schedule[k][j] == 0 )
        {
        schedule[k][j] = 1;
        }
      }
    }

  if( schedule != pyramid->GetSchedule() )
    {
    std::cout << "Schedule should be: " << std::endl;
    std::cout << schedule << std::endl;
    std::cout << "instead of: " << std::endl;
    std::cout << pyramid->GetSchedule();
    return EXIT_FAILURE;
    }

  // test start factors
  const unsigned int * ss = pyramid->GetStartingShrinkFactors();
  for( j = 0; j < ImageDimension; j++ )
    {
    if( ss[j] != factors[j] )
      {
      std::cout << "Returned starting factors incorrect" << std::endl;
      return EXIT_FAILURE;
      }
    }

  // test divisibility
  if( !PyramidType::IsScheduleDownwardDivisible( pyramid->GetSchedule() ) )
    {
    std::cout << "Schedule should be downward divisible" << std::endl;
    return EXIT_FAILURE;
    }

  // generate output at a level with progress
  std::cout << "Run MultiResolutionPyramidImageFilter in standalone mode with progress";
  std::cout << std::endl;

  ShowProgressObject progressWatch(pyramid);
  itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
  command = itk::SimpleMemberCommand<ShowProgressObject>::New();
  command->SetCallbackFunction(&progressWatch,
                               &ShowProgressObject::ShowProgress);
  pyramid->AddObserver(itk::ProgressEvent(), command);

  pyramid->Print( std::cout );

//  update pyramid at a particular level
  for (unsigned int testLevel=0; testLevel< numLevels; testLevel++)
    {
    pyramid->GetOutput( testLevel )->Update();
    // check the output image information
    InputImageType::SizeType inputSize =
      pyramid->GetInput()->GetLargestPossibleRegion().GetSize();
    //const InputImageType::PointType& inputOrigin =
    //  pyramid->GetInput()->GetOrigin();
    OutputImageType::PointType InputCenterOfMass=GetCenterOfMass<OutputImageType>( pyramid->GetInput() );
    const InputImageType::SpacingType& inputSpacing =
      pyramid->GetInput()->GetSpacing();

    OutputImageType::SizeType outputSize =
      pyramid->GetOutput( testLevel )->GetLargestPossibleRegion().GetSize();
    //const OutputImageType::PointType& outputOrigin =
    //  pyramid->GetOutput( testLevel )->GetOrigin();
    const OutputImageType::SpacingType& outputSpacing =
      pyramid->GetOutput( testLevel )->GetSpacing();


      OutputImageType::PointType OutputCenterOfMass=GetCenterOfMass<OutputImageType>( pyramid->GetOutput( testLevel ) );
      //NOTE:  Origins can not be preserved if the objects physical spaces are to be preserved!
      //       The image center of physical space is what really needs to be preserved across
      //       the different scales.
      //if( outputOrigin[j] != inputOrigin[j] )
      //  {
      //  break;
      //  }
      //std::cout << "TEST:  "<< j<< " " << OutputCenterOfMass << " != " << InputCenterOfMass << std::endl;
      //if( OutputCenterOfMass != InputCenterOfMass )
        {
        OutputImageType::PointType::VectorType ErrorCenterOfMass=OutputCenterOfMass-InputCenterOfMass;
        const double CenterOfMassEpsilonAllowed=0.001;
        const double ErrorPercentage=(ErrorCenterOfMass.GetNorm() / pyramid->GetOutput( testLevel )->GetSpacing().GetNorm() );
        if( ErrorPercentage > CenterOfMassEpsilonAllowed)
          {
          std::cout << "ERROR:  " << testLevel << " " << OutputCenterOfMass
            << " != " << InputCenterOfMass <<  " at pixel spacing level " <<
            pyramid->GetOutput( testLevel )->GetDirection()*pyramid->GetOutput( testLevel )->GetSpacing()
            << std::endl;
          std::cout << "ERROR PERCENT:  " << ErrorCenterOfMass.GetNorm()
           << "/" << pyramid->GetOutput( testLevel )->GetSpacing().GetNorm()
           << " = " << ErrorPercentage
           << std::endl;
          }
        else
          {
          std::cout << "WITHIN TOLERANCE PASSED:  " << testLevel << " " << OutputCenterOfMass << " != "
            << InputCenterOfMass <<  " at pixel spacing level " <<
            pyramid->GetOutput( testLevel )->GetDirection()*pyramid->GetOutput( testLevel )->GetSpacing()
            << std::endl;
          std::cout << "OFFSET DIFF PERCENT:  " << ErrorCenterOfMass.GetNorm()
            << "/" << pyramid->GetOutput( testLevel )->GetSpacing().GetNorm()
            << " = " << ErrorPercentage
            << std::endl;
          }
        //break;
        }
    for( j = 0; j < ImageDimension; j++ )
      {
      if( itk::Math::NotAlmostEquals( outputSpacing[j],
        inputSpacing[j] * (double) schedule[testLevel][j] ) )
        {
        break;
        }
      unsigned int sz = inputSize[j] / schedule[testLevel][j];
      if( sz == 0 ) sz = 1;
      if( outputSize[j] != sz )
        {
        break;
        }
      }

    if( j != ImageDimension )
      {
      std::cout << "Output meta information incorrect." << std::endl;
      pyramid->GetInput()->Print(std::cout);
      pyramid->GetOutput( testLevel )->Print(std::cout);
      return EXIT_FAILURE;
      }
    }

  // check that the buffered region is equivalent the largestpossible
  if( pyramid->GetOutput(numLevels-1)->GetBufferedRegion() !=
    pyramid->GetOutput(numLevels-1)->GetLargestPossibleRegion() )
    {
    std::cout << "Output buffered region incorrect. " << std::endl;
    pyramid->GetOutput(numLevels-1)->Print(std::cout);
    return EXIT_FAILURE;
    }

  // Test schedule checking code
  factors.Fill( 0 );
  pyramid->SetStartingShrinkFactors( factors.Begin() );

  schedule = pyramid->GetSchedule();
  pyramid->SetSchedule( schedule );
  schedule.Fill( 0 );
  pyramid->SetSchedule( schedule );

  ScheduleType temp2( pyramid->GetNumberOfLevels() - 1, ImageDimension );
  temp2.Fill( 1 );
  pyramid->SetSchedule( temp2 );

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;

}