1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkRecursiveMultiResolutionPyramidImageFilter.h"
#include "itkMath.h"
#include <iostream>
namespace
{
/**
* This function defines the test image pattern.
* The pattern is a 3D gaussian in the middle
* and some directional pattern on the outside.
*/
double F( double x, double y, double z )
{
const double s = 50;
double value = 200.0 * std::exp( - ( x*x + y*y + z*z )/(s*s) );
x -= 8; y += 3; z += 0;
double r = std::sqrt( x*x + y*y + z*z );
if( r > 35 )
{
value = 2 * ( itk::Math::abs( x ) +
0.8 * itk::Math::abs( y ) +
0.5 * itk::Math::abs( z ) );
}
if( r < 4 )
{
value = 400;
}
return value;
}
// The following three classes are used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
ShowProgressObject(itk::ProcessObject* o)
{m_Process = o;}
void ShowProgress()
{std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
itk::ProcessObject::Pointer m_Process;
};
}
#include "itkImageMomentsCalculator.h"
template <typename ImageType>
typename ImageType::PointType GetCenterOfMass(const ImageType * volume)
{
typename ImageType::PointType CenterOfMass;
{
typedef itk::ImageMomentsCalculator<ImageType> momentsCalculatorType;
typename momentsCalculatorType::Pointer moments=momentsCalculatorType::New();
moments->SetImage(volume);
moments->Compute();
typename ImageType::PointType::VectorType tempCenterOfMass=moments->GetCenterOfGravity();
for( unsigned int q=0;q<ImageType::ImageDimension;q++ )
{
CenterOfMass[q]=tempCenterOfMass[q];
}
}
return CenterOfMass;
}
int itkMultiResolutionPyramidImageFilterTest(int argc, char* argv[] )
{
//------------------------------------------------------------
// Create a simple image
//------------------------------------------------------------
// Allocate Images
typedef float PixelType;
typedef itk::Image<PixelType,3> InputImageType;
typedef itk::Image<float,3> OutputImageType;
enum { ImageDimension = InputImageType::ImageDimension };
bool useShrinkFilter(false);
if(argc > 1)
{
std::string s(argv[1]);
std::cout << "useShrinkFilter ";
if(s == "Shrink")
{
useShrinkFilter = true;
std::cout << "true";
}
else
{
std::cout << "false";
}
std::cout << std::endl;
}
bool TestRecursive(false);
if(argc > 2)
{
std::string s(argv[2]);
if(s == "TestRecursive")
{
TestRecursive = true;
}
}
//At best center of mass can be preserved very closely only when
//shrink factors divisible into the original image size
//are used, so only test that option.
//When shrink factors are not divisible, this still does
//a best does the best possible job.
//InputImageType::SizeType size = {{101,101,41}};
InputImageType::SizeType size = {{128,132,48}};
InputImageType::IndexType index = {{0,0,0}};
InputImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
InputImageType::SpacingType spacing;
spacing[0]=0.5;
spacing[1]=2.7;
spacing[2]=7.5;
InputImageType::DirectionType direction;
direction.Fill(0.0);
direction[0][1]=-1;
direction[1][2]=1;
direction[2][0]=1;
InputImageType::Pointer imgTarget = InputImageType::New();
imgTarget->SetLargestPossibleRegion( region );
imgTarget->SetBufferedRegion( region );
imgTarget->SetRequestedRegion( region );
imgTarget->SetSpacing( spacing );
imgTarget->SetDirection( direction );
imgTarget->Allocate();
// Fill images with a 3D gaussian with some directional pattern
// in the background
typedef itk::ImageRegionIterator<InputImageType> Iterator;
itk::Point<double,3> center;
center[0] = (double)region.GetSize()[0]/2.0;
center[1] = (double)region.GetSize()[1]/2.0;
center[2] = (double)region.GetSize()[2]/2.0;
itk::Point<double,3> p;
itk::Vector<double,3> d;
Iterator ti(imgTarget,region);
while(!ti.IsAtEnd())
{
p[0] = ti.GetIndex()[0];
p[1] = ti.GetIndex()[1];
p[2] = ti.GetIndex()[2];
d = p-center;
const double x = d[0];
const double y = d[1];
const double z = d[2];
ti.Set( (PixelType) F(x,y,z) );
++ti;
}
// set image origin to be center of the image
double transCenter[3];
unsigned int j, k;
for( j = 0; j < 3; j++ )
{
transCenter[j] = -0.5 * double(size[j])*spacing[j];
}
imgTarget->SetOrigin( transCenter );
/**
* Setup a multi-resolution pyramid
*/
typedef itk::MultiResolutionPyramidImageFilter<InputImageType,OutputImageType>
PyramidType;
typedef PyramidType::ScheduleType ScheduleType;
/**
* This is kind of cheating but it exploits the fact that Recursive... is derived
* from Multi... so it just swaps classes based on a command line flag. hey presto!
* new test!
*/
PyramidType::Pointer pyramid;
if(!TestRecursive)
{
pyramid = PyramidType::New();
}
else
{
pyramid =
itk::RecursiveMultiResolutionPyramidImageFilter<InputImageType,OutputImageType>::New();
}
pyramid->SetUseShrinkImageFilter(useShrinkFilter);
pyramid->SetInput( imgTarget );
unsigned int numLevels;
itk::Vector<unsigned int,ImageDimension> factors;
// set schedule by specifying the number of levels;
numLevels = 3;
factors.Fill( 1 << (numLevels - 1) );
pyramid->SetNumberOfLevels( numLevels );
// check the schedule
ScheduleType schedule( numLevels, ImageDimension );
for( k = 0; k < numLevels; k++ )
{
unsigned int denominator = 1 << k;
for( j = 0; j < ImageDimension; j++ )
{
schedule[k][j] = factors[j] / denominator;
if( schedule[k][j] == 0 )
{
schedule[k][j] = 1;
}
}
}
if( schedule != pyramid->GetSchedule() )
{
std::cout << "Schedule should be: " << std::endl;
std::cout << schedule << std::endl;
std::cout << "instead of: " << std::endl;
std::cout << pyramid->GetSchedule();
return EXIT_FAILURE;
}
// set schedule by specifying the starting shrink factors
numLevels = 4;
factors[0] = 8; factors[1] = 4; factors[2] = 2;
pyramid->SetNumberOfLevels( numLevels );
pyramid->SetStartingShrinkFactors( factors.Begin() );
// check the schedule;
ScheduleType temp( numLevels, ImageDimension );
temp.Fill(0);
schedule = temp;
for( k = 0; k < numLevels; k++ )
{
unsigned int denominator = 1 << k;
for( j = 0; j < ImageDimension; j++ )
{
schedule[k][j] = factors[j] / denominator;
if( schedule[k][j] == 0 )
{
schedule[k][j] = 1;
}
}
}
if( schedule != pyramid->GetSchedule() )
{
std::cout << "Schedule should be: " << std::endl;
std::cout << schedule << std::endl;
std::cout << "instead of: " << std::endl;
std::cout << pyramid->GetSchedule();
return EXIT_FAILURE;
}
// test start factors
const unsigned int * ss = pyramid->GetStartingShrinkFactors();
for( j = 0; j < ImageDimension; j++ )
{
if( ss[j] != factors[j] )
{
std::cout << "Returned starting factors incorrect" << std::endl;
return EXIT_FAILURE;
}
}
// test divisibility
if( !PyramidType::IsScheduleDownwardDivisible( pyramid->GetSchedule() ) )
{
std::cout << "Schedule should be downward divisible" << std::endl;
return EXIT_FAILURE;
}
// generate output at a level with progress
std::cout << "Run MultiResolutionPyramidImageFilter in standalone mode with progress";
std::cout << std::endl;
ShowProgressObject progressWatch(pyramid);
itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
command = itk::SimpleMemberCommand<ShowProgressObject>::New();
command->SetCallbackFunction(&progressWatch,
&ShowProgressObject::ShowProgress);
pyramid->AddObserver(itk::ProgressEvent(), command);
pyramid->Print( std::cout );
// update pyramid at a particular level
for (unsigned int testLevel=0; testLevel< numLevels; testLevel++)
{
pyramid->GetOutput( testLevel )->Update();
// check the output image information
InputImageType::SizeType inputSize =
pyramid->GetInput()->GetLargestPossibleRegion().GetSize();
//const InputImageType::PointType& inputOrigin =
// pyramid->GetInput()->GetOrigin();
OutputImageType::PointType InputCenterOfMass=GetCenterOfMass<OutputImageType>( pyramid->GetInput() );
const InputImageType::SpacingType& inputSpacing =
pyramid->GetInput()->GetSpacing();
OutputImageType::SizeType outputSize =
pyramid->GetOutput( testLevel )->GetLargestPossibleRegion().GetSize();
//const OutputImageType::PointType& outputOrigin =
// pyramid->GetOutput( testLevel )->GetOrigin();
const OutputImageType::SpacingType& outputSpacing =
pyramid->GetOutput( testLevel )->GetSpacing();
OutputImageType::PointType OutputCenterOfMass=GetCenterOfMass<OutputImageType>( pyramid->GetOutput( testLevel ) );
//NOTE: Origins can not be preserved if the objects physical spaces are to be preserved!
// The image center of physical space is what really needs to be preserved across
// the different scales.
//if( outputOrigin[j] != inputOrigin[j] )
// {
// break;
// }
//std::cout << "TEST: "<< j<< " " << OutputCenterOfMass << " != " << InputCenterOfMass << std::endl;
//if( OutputCenterOfMass != InputCenterOfMass )
{
OutputImageType::PointType::VectorType ErrorCenterOfMass=OutputCenterOfMass-InputCenterOfMass;
const double CenterOfMassEpsilonAllowed=0.001;
const double ErrorPercentage=(ErrorCenterOfMass.GetNorm() / pyramid->GetOutput( testLevel )->GetSpacing().GetNorm() );
if( ErrorPercentage > CenterOfMassEpsilonAllowed)
{
std::cout << "ERROR: " << testLevel << " " << OutputCenterOfMass
<< " != " << InputCenterOfMass << " at pixel spacing level " <<
pyramid->GetOutput( testLevel )->GetDirection()*pyramid->GetOutput( testLevel )->GetSpacing()
<< std::endl;
std::cout << "ERROR PERCENT: " << ErrorCenterOfMass.GetNorm()
<< "/" << pyramid->GetOutput( testLevel )->GetSpacing().GetNorm()
<< " = " << ErrorPercentage
<< std::endl;
}
else
{
std::cout << "WITHIN TOLERANCE PASSED: " << testLevel << " " << OutputCenterOfMass << " != "
<< InputCenterOfMass << " at pixel spacing level " <<
pyramid->GetOutput( testLevel )->GetDirection()*pyramid->GetOutput( testLevel )->GetSpacing()
<< std::endl;
std::cout << "OFFSET DIFF PERCENT: " << ErrorCenterOfMass.GetNorm()
<< "/" << pyramid->GetOutput( testLevel )->GetSpacing().GetNorm()
<< " = " << ErrorPercentage
<< std::endl;
}
//break;
}
for( j = 0; j < ImageDimension; j++ )
{
if( itk::Math::NotAlmostEquals( outputSpacing[j],
inputSpacing[j] * (double) schedule[testLevel][j] ) )
{
break;
}
unsigned int sz = inputSize[j] / schedule[testLevel][j];
if( sz == 0 ) sz = 1;
if( outputSize[j] != sz )
{
break;
}
}
if( j != ImageDimension )
{
std::cout << "Output meta information incorrect." << std::endl;
pyramid->GetInput()->Print(std::cout);
pyramid->GetOutput( testLevel )->Print(std::cout);
return EXIT_FAILURE;
}
}
// check that the buffered region is equivalent the largestpossible
if( pyramid->GetOutput(numLevels-1)->GetBufferedRegion() !=
pyramid->GetOutput(numLevels-1)->GetLargestPossibleRegion() )
{
std::cout << "Output buffered region incorrect. " << std::endl;
pyramid->GetOutput(numLevels-1)->Print(std::cout);
return EXIT_FAILURE;
}
// Test schedule checking code
factors.Fill( 0 );
pyramid->SetStartingShrinkFactors( factors.Begin() );
schedule = pyramid->GetSchedule();
pyramid->SetSchedule( schedule );
schedule.Fill( 0 );
pyramid->SetSchedule( schedule );
ScheduleType temp2( pyramid->GetNumberOfLevels() - 1, ImageDimension );
temp2.Fill( 1 );
pyramid->SetSchedule( temp2 );
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|