File: itkANTSNeighborhoodCorrelationImageToImageRegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (300 lines) | stat: -rw-r--r-- 12,498 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

/**
 * Test program for ANTSNeighborhoodCorrelationImageToImageMetricv4 and
 * GradientDescentOptimizerv4 classes.
 *
 * Perform a registration using user-supplied images.
 * No numerical verification is performed. Test passes as long
 * as no exception occurs.
 */
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"

#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"

#include "itkCastImageFilter.h"

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

namespace{
// The following class is used to support callbacks
// on the filter in the pipeline that follows later
template<typename TRegistration>
class ShowProgressObject
{
public:
  ShowProgressObject(TRegistration* o)
    {m_Process = o;}
  void ShowProgress()
    {
    std::cout << "Progress: " << m_Process->GetProgress() << "  ";
    std::cout << "Iter: " << m_Process->GetElapsedIterations() << "  ";
    std::cout << "Metric: "   << m_Process->GetMetric()   << "  ";
    std::cout << "RMSChange: " << m_Process->GetRMSChange() << "  ";
    std::cout << std::endl;
    if ( m_Process->GetElapsedIterations() == 10 )
      { m_Process->StopRegistration(); }
    }
  typename TRegistration::Pointer m_Process;
};
}

int itkANTSNeighborhoodCorrelationImageToImageRegistrationTest(int argc, char *argv[])
{

  if( argc < 4 || argc > 8)
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile ";
    std::cerr << " [numberOfIterations] ";
    std::cerr << " [learningRate] [deformationLearningRate] " << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << argc << std::endl;
  unsigned int numberOfIterations = 10;
  double learningRate = 0.1;
  double deformationLearningRate = 1;
  if( argc >= 5 )
    {
    numberOfIterations = atoi( argv[4] );
    }
  if( argc >= 6 )
    {
    learningRate = atof( argv[5] );
    }
  if( argc == 7 )
    {
    deformationLearningRate = atof( argv[6] );
    }
  std::cout << " iterations "<< numberOfIterations << " learningRate "<<learningRate << std::endl;

  const unsigned int Dimension = 2;
  typedef double PixelType; //I assume png is unsigned short

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );

  //get the images
  fixedImageReader->Update();
  FixedImageType::Pointer  fixedImage = fixedImageReader->GetOutput();
  movingImageReader->Update();
  MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

  /** define a resample filter that will ultimately be used to deform the image */
  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;
  ResampleFilterType::Pointer resample = ResampleFilterType::New();


  /** create a composite transform holder for other transforms  */
  typedef itk::CompositeTransform<double, Dimension>    CompositeType;

  CompositeType::Pointer compositeTransform = CompositeType::New();

  //create an affine transform
  typedef itk::AffineTransform<double, Dimension>
                                                    AffineTransformType;
  AffineTransformType::Pointer affineTransform = AffineTransformType::New();
  affineTransform->SetIdentity();
  std::cout <<" affineTransform params " << affineTransform->GetParameters() << std::endl;
  typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform<
                                                    double, Dimension>
                                                     DisplacementTransformType;
  DisplacementTransformType::Pointer displacementTransform =
                                              DisplacementTransformType::New();
  typedef DisplacementTransformType::DisplacementFieldType
                                                         DisplacementFieldType;
  DisplacementFieldType::Pointer field = DisplacementFieldType::New();

  //set the field to be the same as the fixed image region, which will
  // act by default as the virtual domain in this example.
  field->SetRegions( fixedImage->GetLargestPossibleRegion() );
  //make sure the field has the same spatial information as the image
  field->CopyInformation( fixedImage );
  std::cout << "fixedImage->GetLargestPossibleRegion(): "
            << fixedImage->GetLargestPossibleRegion() << std::endl
            << "fixedImage->GetBufferedRegion(): "
            << fixedImage->GetBufferedRegion() << std::endl;
  field->Allocate();
  // Fill it with 0's
  DisplacementTransformType::OutputVectorType zeroVector;
  zeroVector.Fill( 0 );
  field->FillBuffer( zeroVector );
  // Assign to transform
  displacementTransform->SetDisplacementField( field );
  displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField( 5 );
  displacementTransform->SetGaussianSmoothingVarianceForTheTotalField( 6 );

  //identity transform for fixed image
  typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
  IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  // The metric
  typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4
    < FixedImageType, MovingImageType > MetricType;
  MetricType::Pointer metric = MetricType::New();
  itk::Size<Dimension> radSize;
  radSize.Fill(2);
  metric->SetRadius(radSize);

  // Assign images and transforms.
  // By not setting a virtual domain image or virtual domain settings,
  // the metric will use the fixed image for the virtual domain.
  metric->SetVirtualDomainFromImage( fixedImage );
  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetFixedTransform( identityTransform );
  metric->SetMovingTransform( affineTransform );
  bool gaussian = false;
  metric->SetUseMovingImageGradientFilter( gaussian );
  metric->SetUseFixedImageGradientFilter( gaussian );
  metric->Initialize();

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
  RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
  shiftScaleEstimator->SetMetric(metric);
  shiftScaleEstimator->SetTransformForward(true); //by default, scales for the moving transform
  RegistrationParameterScalesFromShiftType::ScalesType movingScales( affineTransform->GetNumberOfLocalParameters() );
  shiftScaleEstimator->EstimateScales(movingScales);
  std::cout << "Shift scales for the affine transform = " << movingScales << std::endl;

  std::cout << "First do an affine registration " << std::endl;
  typedef itk::GradientDescentOptimizerv4  OptimizerType;
  OptimizerType::Pointer  optimizer = OptimizerType::New();
  optimizer->SetMetric( metric );
  optimizer->SetLearningRate( learningRate );
  optimizer->SetNumberOfIterations( numberOfIterations );
  optimizer->SetScales( movingScales );
  optimizer->StartOptimization();

  std::cout << "Follow affine with deformable registration " << std::endl;
  // now add the displacement field to the composite transform
  compositeTransform->AddTransform( affineTransform );
  compositeTransform->AddTransform( displacementTransform );
  compositeTransform->SetAllTransformsToOptimizeOn(); //Set back to optimize all.
  compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); //set to optimize the displacement field
  metric->SetMovingTransform( compositeTransform );
  metric->Initialize();

  // Optimizer
  RegistrationParameterScalesFromShiftType::ScalesType displacementScales(
    displacementTransform->GetNumberOfLocalParameters());
  displacementScales.Fill(1);
  optimizer->SetMetric( metric );
  optimizer->SetLearningRate( deformationLearningRate );
  optimizer->SetScales( displacementScales );
  optimizer->SetNumberOfIterations( numberOfIterations );
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during deformation Optimization:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "...finished. " << std::endl;

  std::cout << "threads: metric: " << metric->GetNumberOfThreadsUsed() << "  optimizer: " << optimizer->GetNumberOfThreads() << std::endl;

  // try use the sparse sample point set in CC metric
  typedef MetricType::FixedSampledPointSetType  PointSetType;
  typedef PointSetType::PointType               PointType;
  std::cout << "Using sparse point set..." << std::endl;
  PointSetType::Pointer               pset(PointSetType::New());
  unsigned int ind=0,ct=0;
  itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
  for( It.GoToBegin(); !It.IsAtEnd(); ++It )
    {
    // take every point
      PointType pt;
      fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
      pset->SetPoint(ind, pt);
      ind++;
      ct++;
    }
  metric->SetFixedSampledPointSet( pset );
  metric->SetUseFixedSampledPointSet( true );
  metric->Initialize();
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown using sparse metric ! " << std::endl;
    std::cout << "An error occurred during deformation Optimization using sparse metric:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "...finished. " << std::endl;
  std::cout << "threads: metric: " << metric->GetNumberOfThreadsUsed() << "  optimizer: " << optimizer->GetNumberOfThreads() << std::endl;

  //warp the image with the displacement field
  resample->SetTransform( compositeTransform );
  resample->SetInput( movingImageReader->GetOutput() );
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();

  //write the warped image into a file
  typedef double                                    OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >  OutputImageType;
  typedef itk::CastImageFilter<
                        MovingImageType,
                        OutputImageType >           CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();
  writer->SetFileName( argv[3] );
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->Update();

  std::cout << "Test PASSED." << affineTransform->GetParameters() << std::endl;
  return EXIT_SUCCESS;
}