1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkTranslationTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkImage.h"
#include "itkGaussianImageSource.h"
#include "itkCyclicShiftImageFilter.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkImageRegionIteratorWithIndex.h"
/* This test performs a simple registration test on each
* ImageToImageMetricv4 metric, testing that:
* 1) metric value is minimized
* 2) final optimization position is correct within tolerance
* 3) different options for sampling and image gradient calculation work
* New metrics must be added manually to this test.
*/
template<unsigned int Dimension, typename TImage, typename TMetric>
int ImageToImageMetricv4RegistrationTestRun( typename TMetric::Pointer metric, int numberOfIterations, typename TImage::PixelType maximumStepSize, bool doSampling, bool doGradientFilter )
{
typedef typename TImage::PixelType PixelType;
typedef PixelType CoordinateRepresentationType;
// Create two simple images
itk::SizeValueType ImageSize = 100;
itk::OffsetValueType boundary = 6;
if( Dimension == 3 )
{
ImageSize = 60;
boundary = 4;
}
// Declare Gaussian Sources
typedef itk::GaussianImageSource< TImage > GaussianImageSourceType;
typename TImage::SizeType size;
size.Fill( ImageSize );
typename TImage::SpacingType spacing;
spacing.Fill( itk::NumericTraits<CoordinateRepresentationType>::OneValue() );
typename TImage::PointType origin;
origin.Fill( itk::NumericTraits<CoordinateRepresentationType>::ZeroValue() );
typename TImage::DirectionType direction;
direction.Fill( itk::NumericTraits<CoordinateRepresentationType>::OneValue() );
typename GaussianImageSourceType::Pointer fixedImageSource = GaussianImageSourceType::New();
fixedImageSource->SetSize( size );
fixedImageSource->SetOrigin( origin );
fixedImageSource->SetSpacing( spacing );
fixedImageSource->SetNormalized( false );
fixedImageSource->SetScale( 1.0f );
fixedImageSource->Update();
typename TImage::Pointer fixedImage = fixedImageSource->GetOutput();
// zero-out the boundary
itk::ImageRegionIteratorWithIndex<TImage> it( fixedImage, fixedImage->GetLargestPossibleRegion() );
for( it.GoToBegin(); ! it.IsAtEnd(); ++it )
{
for( itk::SizeValueType n=0; n < Dimension; n++ )
{
if( it.GetIndex()[n] < boundary || (static_cast<itk::OffsetValueType>(size[n]) - it.GetIndex()[n]) <= boundary )
{
it.Set( itk::NumericTraits<PixelType>::ZeroValue() );
break;
}
}
}
// shift the fixed image to get the moving image
typedef itk::CyclicShiftImageFilter<TImage, TImage> CyclicShiftFilterType;
typename CyclicShiftFilterType::Pointer shiftFilter = CyclicShiftFilterType::New();
typename CyclicShiftFilterType::OffsetType imageShift;
typename CyclicShiftFilterType::OffsetValueType maxImageShift = boundary-1;
imageShift.Fill( maxImageShift );
imageShift[0] = maxImageShift / 2;
shiftFilter->SetInput( fixedImage );
shiftFilter->SetShift( imageShift );
shiftFilter->Update();
typename TImage::Pointer movingImage = shiftFilter->GetOutput();
// create an affine transform
typedef itk::TranslationTransform<double, Dimension> TranslationTransformType;
typename TranslationTransformType::Pointer translationTransform = TranslationTransformType::New();
translationTransform->SetIdentity();
// setup metric
//
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetMovingTransform( translationTransform );
metric->SetUseMovingImageGradientFilter( doGradientFilter );
metric->SetUseFixedImageGradientFilter( doGradientFilter );
std::cout << "Use image gradient filter: " << doGradientFilter << std::endl;
// sampling
if( ! doSampling )
{
std::cout << "Dense sampling." << std::endl;
metric->SetUseFixedSampledPointSet( false );
}
else
{
typedef typename TMetric::FixedSampledPointSetType PointSetType;
typedef typename PointSetType::PointType PointType;
typename PointSetType::Pointer pset(PointSetType::New());
itk::SizeValueType ind=0,ct=0;
itk::ImageRegionIteratorWithIndex<TImage> itS(fixedImage, fixedImage->GetLargestPossibleRegion() );
for( itS.GoToBegin(); !itS.IsAtEnd(); ++itS )
{
// take every N^th point
// not sampling sparsely in order to get all metrics to pass
// with similar settings
if ( ct % 2 == 0 )
{
PointType pt;
fixedImage->TransformIndexToPhysicalPoint( itS.GetIndex(), pt);
pset->SetPoint(ind, pt);
ind++;
}
ct++;
}
std::cout << "Setting point set with " << ind << " points of "
<< fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
metric->SetFixedSampledPointSet( pset );
metric->SetUseFixedSampledPointSet( true );
std::cout << "Testing metric with point set..." << std::endl;
}
// initialize
metric->Initialize();
// calculate initial metric value
typename TMetric::MeasureType initialValue = metric->GetValue();
// scales estimator
typedef itk::RegistrationParameterScalesFromPhysicalShift< TMetric > RegistrationParameterScalesFromPhysicalShiftType;
typename RegistrationParameterScalesFromPhysicalShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromPhysicalShiftType::New();
shiftScaleEstimator->SetMetric(metric);
//
// optimizer
//
typedef itk::GradientDescentOptimizerv4 OptimizerType;
typename OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
if( maximumStepSize > 0 )
{
optimizer->SetMaximumStepSizeInPhysicalUnits( maximumStepSize );
}
optimizer->StartOptimization();
std::cout << "image size: " << size;
std::cout << ", # of iterations: " << optimizer->GetNumberOfIterations() << ", max step size: "
<< optimizer->GetMaximumStepSizeInPhysicalUnits() << std::endl;
std::cout << "imageShift: " << imageShift << std::endl;
std::cout << "Transform final parameters: " << translationTransform->GetParameters() << std::endl;
// final metric value
typename TMetric::MeasureType finalValue = metric->GetValue();
std::cout << "metric value: initial: " << initialValue << ", final: " << finalValue << std::endl;
// test that the final position is close to the truth
double tolerance = static_cast<double>(0.11);
for( itk::SizeValueType n=0; n < Dimension; n++ )
{
if( std::fabs( 1.0 - ( static_cast<double>(imageShift[n]) / translationTransform->GetParameters()[n] ) ) > tolerance )
{
std::cerr << "XXX Failed. Final transform parameters are not within tolerance of image shift. XXX" << std::endl;
return EXIT_FAILURE;
}
}
// test that metric value is minimized
if( finalValue >= initialValue )
{
std::cerr << "XXX Failed. Final metric value is not less than initial value. XXX" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
//////////////////////////////////////////////////////////////
template<unsigned int Dimension>
int itkImageToImageMetricv4RegistrationTestRunAll (int argc, char *argv[])
{
typedef itk::Image< double, Dimension > ImageType;
// options
// we have two options for iterations and step size to accomodate
// the different behavior of metrics
int numberOfIterations1 = 50;
typename ImageType::PixelType maximumStepSize1 = 1.0;
int numberOfIterations2 = 120;
typename ImageType::PixelType maximumStepSize2 = 0.1;
bool doSampling = false;
bool doGradientFilter = false;
if( argc > 1 )
{
numberOfIterations1 = atoi( argv[1] );
}
if( argc > 2 )
{
maximumStepSize1 = atof( argv[2] );
}
if( argc > 3 )
{
numberOfIterations2 = atoi( argv[3] );
}
if( argc > 4 )
{
maximumStepSize2 = atof( argv[4] );
}
if( argc > 5 )
{
doSampling = atoi( argv[5] );
}
if( argc > 6 )
{
doGradientFilter = atoi( argv[6] );
}
std::cout << std::endl << "******************* Dimension: " << Dimension << std::endl;
bool passed = true;
// ANTS Neighborhood Correlation
// This metric does not support sampling
if( !doSampling )
{
typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<ImageType, ImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
std::cout << std::endl << "*** ANTSNeighborhoodCorrelation metric: " << std::endl;
if( ImageToImageMetricv4RegistrationTestRun<Dimension, ImageType, MetricType>( metric, numberOfIterations1, maximumStepSize1, doSampling, doGradientFilter ) != EXIT_SUCCESS )
{
passed = false;
}
}
// Correlation
{
typedef itk::CorrelationImageToImageMetricv4<ImageType, ImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
std::cout << std::endl << "*** Correlation metric: " << std::endl;
if( ImageToImageMetricv4RegistrationTestRun<Dimension, ImageType, MetricType>( metric, numberOfIterations1, maximumStepSize1, doSampling, doGradientFilter ) != EXIT_SUCCESS )
{
passed = false;
}
}
// Joint Histogram
{
typedef itk::JointHistogramMutualInformationImageToImageMetricv4<ImageType, ImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
std::cout << std::endl << "*** JointHistogramMutualInformation metric: " << std::endl;
if( ImageToImageMetricv4RegistrationTestRun<Dimension, ImageType, MetricType>( metric, numberOfIterations1, maximumStepSize1, doSampling, doGradientFilter ) != EXIT_SUCCESS )
{
passed = false;
}
}
// Mattes
{
typedef itk::MattesMutualInformationImageToImageMetricv4<ImageType, ImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
std::cout << std::endl << "*** MattesMutualInformation metric: " << std::endl;
if( ImageToImageMetricv4RegistrationTestRun<Dimension, ImageType, MetricType>( metric, numberOfIterations2, maximumStepSize2, doSampling, doGradientFilter ) != EXIT_SUCCESS )
{
passed = false;
}
}
// MeanSquares
{
typedef itk::MeanSquaresImageToImageMetricv4<ImageType, ImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
std::cout << std::endl << "*** MeanSquares metric: " << std::endl;
if( ImageToImageMetricv4RegistrationTestRun<Dimension, ImageType, MetricType>( metric, numberOfIterations1, maximumStepSize1, doSampling, doGradientFilter ) != EXIT_SUCCESS )
{
passed = false;
}
}
if( passed )
{
return EXIT_SUCCESS;
}
else
{
return EXIT_FAILURE;
}
}
//////////////////////////////////////////////////////////////
int itkImageToImageMetricv4RegistrationTest (int argc, char *argv[])
{
int result = EXIT_SUCCESS;
if( itkImageToImageMetricv4RegistrationTestRunAll<2>(argc, argv) != EXIT_SUCCESS )
{
std::cerr << "Failed for one or more metrics. See error message(s) above." << std::endl;
result = EXIT_FAILURE;
}
return result;
}
|