File: itkJointHistogramMutualInformationImageToImageRegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (380 lines) | stat: -rw-r--r-- 15,423 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

/**
 * Test program for JointHistogramMutualInformationImageToImageMetricv4 and
 * GradientDescentOptimizerv4 classes.
 *
 * Perform a registration using user-supplied images.
 * No numerical verification is performed. Test passes as long
 * as no exception occurs.
 */
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"

#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"

#include "itkCastImageFilter.h"

#include "itkCommand.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include <iomanip>

namespace{

template < typename TOptimizer, typename TMIMetric >
/** \class JointPDFStatus
 * \brief Save the JointPDF from the metric to an image file and check to make sure
 * they are normalized properly. */
class JointPDFStatus: public itk::Command
{
public:
  typedef JointPDFStatus            Self;
  typedef itk::Command              Superclass;
  typedef itk::SmartPointer< Self > Pointer;

  itkSimpleNewMacro( Self ); //Clone, and CreateAnother are not needed here.

  typedef TOptimizer OptimizerType;
  typedef TMIMetric  MIMetricType;

  void SetMIMetric( const MIMetricType * metric )
    {
    this->m_MIMetric = metric;
    }

  void SetOutputFileNameBase( const char * filename )
    {
    this->m_OutputFileNameBase = filename;
    }

  virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *)caller, event);
    }

  virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    const OptimizerType * optimizer =
      dynamic_cast< const OptimizerType * >( object );
    if(optimizer == ITK_NULLPTR)
      {
      return;
      }
    if( !(itk::IterationEvent().CheckEvent( &event )) )
      {
      return;
      }
    std::cout << "Current optimizer iteration: " << optimizer->GetCurrentIteration() << "\n";
    std::cout << "Current optimizer value:     " << optimizer->GetCurrentMetricValue() << "\n";

    std::string  ext = itksys::SystemTools::GetFilenameExtension( this->m_OutputFileNameBase );
    std::string name = itksys::SystemTools::GetFilenameWithoutExtension( this->m_OutputFileNameBase );
    std::string path = itksys::SystemTools::GetFilenamePath( this->m_OutputFileNameBase );
    std::ostringstream ostrm;
    ostrm << name << "_jointpdf_" << this->m_Count << ext;
    std::cout << "Writing joint pdf to:        " << ostrm.str() << std::endl;
    ostrm.str( "" );
    ostrm << path << "/" << name << "_jointpdf_" << this->m_Count << ext;
    this->m_Writer->SetFileName( ostrm.str() );

    typedef typename MIMetricType::JointPDFType JointPDFType;
    const JointPDFType * jointPDF = this->m_MIMetric->GetJointPDF();
    this->m_Writer->SetInput( jointPDF );
    this->m_Writer->Update();

    // Check for correct normalization.
    typedef itk::ImageRegionConstIterator< JointPDFType > IteratorType;
    IteratorType it( jointPDF, jointPDF->GetBufferedRegion() );
    double sum = 0.0;
    for( it.GoToBegin(); ! it.IsAtEnd(); ++it )
      {
      sum += it.Get();
      }
    std::cout << "The PDF sum is               " << std::setprecision( 20 ) << sum << std::endl;

    ++this->m_Count;
    }

protected:
  JointPDFStatus() :
    m_MIMetric( ITK_NULLPTR ),
    m_Count( 0 )
    {
    this->m_Writer = WriterType::New();
    }

private:
  const MIMetricType * m_MIMetric;

  unsigned int m_Count;
  std::string  m_OutputFileNameBase;

  typedef typename itk::ImageFileWriter< typename MIMetricType::JointPDFType > WriterType;
  typename WriterType::Pointer m_Writer;
};
}

int itkJointHistogramMutualInformationImageToImageRegistrationTest(int argc, char *argv[])
{

  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile ";
    std::cerr << " [numberOfIterations numberOfDisplacementIterations] ";
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << argc << std::endl;
  unsigned int numberOfIterations = 10;
  unsigned int numberOfDisplacementIterations = 10;
  if( argc >= 5 )
    {
    numberOfIterations = atoi( argv[4] );
    }
  if( argc >= 6 )
    {
    numberOfDisplacementIterations = atoi( argv[5] );
    }
  std::cout << " iterations "<< numberOfIterations
    << " displacementIterations " << numberOfDisplacementIterations << std::endl;

  const unsigned int Dimension = 2;
  typedef double PixelType; //I assume png is unsigned short

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );

  //get the images
  fixedImageReader->Update();
  FixedImageType::Pointer  fixedImage = fixedImageReader->GetOutput();
  movingImageReader->Update();
  MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

  /** define a resample filter that will ultimately be used to deform the image */
  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;
  ResampleFilterType::Pointer resample = ResampleFilterType::New();


  /** create a composite transform holder for other transforms  */
  typedef itk::CompositeTransform<double, Dimension>    CompositeType;

  CompositeType::Pointer compositeTransform = CompositeType::New();

  //create an affine transform
  typedef itk::AffineTransform<double, Dimension>
                                                    AffineTransformType;
  AffineTransformType::Pointer affineTransform = AffineTransformType::New();
  affineTransform->SetIdentity();
  std::cout <<" affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl;

  typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform< double, Dimension> DisplacementTransformType;
  DisplacementTransformType::Pointer displacementTransform = DisplacementTransformType::New();

  typedef DisplacementTransformType::DisplacementFieldType DisplacementFieldType;
  DisplacementFieldType::Pointer field = DisplacementFieldType::New();

  // set the field to be the same as the fixed image region, which will
  // act by default as the virtual domain in this example.
  field->SetRegions( fixedImage->GetLargestPossibleRegion() );
  //make sure the field has the same spatial information as the image
  field->CopyInformation( fixedImage );
  std::cout << "fixedImage->GetLargestPossibleRegion(): "
            << fixedImage->GetLargestPossibleRegion() << std::endl;
  field->Allocate();
  // Fill it with 0's
  DisplacementTransformType::OutputVectorType zeroVector;
  zeroVector.Fill( 0 );
  field->FillBuffer( zeroVector );
  // Assign to transform
  displacementTransform->SetDisplacementField( field );
  displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField( 5 );
  displacementTransform->SetGaussianSmoothingVarianceForTheTotalField( 6 );

  //identity transform for fixed image
  typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
  IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  // The metric
  typedef itk::JointHistogramMutualInformationImageToImageMetricv4 < FixedImageType, MovingImageType >  MetricType;
  typedef MetricType::FixedSampledPointSetType                                                              PointSetType;
  MetricType::Pointer metric = MetricType::New();
  metric->SetNumberOfHistogramBins(20);

  typedef PointSetType::PointType     PointType;
  PointSetType::Pointer               pset(PointSetType::New());
  unsigned long ind=0,ct=0;
  itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
  for( It.GoToBegin(); !It.IsAtEnd(); ++It )
    {
    // take every N^th point
    if ( ct % 20 == 0  ) // about a factor of 5 speed-up over dense
      {
        PointType pt;
        fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
        pset->SetPoint(ind, pt);
        ind++;
      }
      ct++;
    }
    // brief profiling notes on mutual information affine registration macbook air , mi using every 20th point for sparse
    //  1 thread dense = 10 sec
    //  2 thread dense = 7.5  sec
    //  1 thread sparse = 2.2 sec
    //  2 thread sparse = 1.8 sec
    // this uses only 1500 points so it's probably not a great multi-thread test for the sparse case
  std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
  metric->SetFixedSampledPointSet( pset );
  metric->SetUseFixedSampledPointSet( true );
  std::cout << "Testing metric with point set..." << std::endl;

  // Assign images and transforms.
  // By not setting a virtual domain image or virtual domain settings,
  // the metric will use the fixed image for the virtual domain.
  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetFixedTransform( identityTransform );
  metric->SetMovingTransform( affineTransform );
  const bool gaussian = false;
  metric->SetUseMovingImageGradientFilter( gaussian );
  metric->SetUseFixedImageGradientFilter( gaussian );
  metric->Initialize();

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
  RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
  shiftScaleEstimator->SetMetric(metric);

  std::cout << "First do an affine registration " << std::endl;
  typedef itk::GradientDescentOptimizerv4  OptimizerType;
  OptimizerType::Pointer  optimizer = OptimizerType::New();
  typedef JointPDFStatus< OptimizerType, MetricType > JointPDFStatusType;
  JointPDFStatusType::Pointer jointPDFStatus = JointPDFStatusType::New();
  jointPDFStatus->SetOutputFileNameBase( argv[3] );
  jointPDFStatus->SetMIMetric( metric );
  //optimizer->AddObserver( itk::IterationEvent(), jointPDFStatus );
  optimizer->SetMetric( metric );
  optimizer->SetNumberOfIterations( numberOfIterations );
  optimizer->SetScalesEstimator( shiftScaleEstimator );
  optimizer->StartOptimization();

  std::cout << "Number of threads: metric: " << metric->GetNumberOfThreadsUsed() << " optimizer: " << optimizer->GetNumberOfThreads() << std::endl;
  std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;

  std::cout << "Follow affine with deformable registration " << std::endl;
  // now add the displacement field to the composite transform
  compositeTransform->AddTransform( affineTransform );
  compositeTransform->AddTransform( displacementTransform );
  compositeTransform->SetAllTransformsToOptimizeOn(); //Set back to optimize all.
  compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); //set to optimize the displacement field
  metric->SetMovingTransform( compositeTransform );
  metric->SetUseFixedSampledPointSet( false );
  metric->Initialize();

  // Optimizer
  RegistrationParameterScalesFromShiftType::ScalesType
    displacementScales( displacementTransform->GetNumberOfLocalParameters() );
  displacementScales.Fill(1);
  if( 0 )
    {
    optimizer->SetScales( displacementScales );
    }
  else
    {
    optimizer->SetScalesEstimator( shiftScaleEstimator );
    }
  optimizer->SetMetric( metric );
  optimizer->SetNumberOfIterations( numberOfDisplacementIterations );
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during deformation Optimization:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "...finished. " << std::endl;

  std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;


  //warp the image with the displacement field
  resample->SetTransform( compositeTransform );
  resample->SetInput( movingImageReader->GetOutput() );
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();

  //write out the displacement field
  typedef itk::ImageFileWriter< DisplacementFieldType >  DisplacementWriterType;
  DisplacementWriterType::Pointer      displacementwriter =  DisplacementWriterType::New();
  std::string outfilename( argv[3] );
  std::string  ext = itksys::SystemTools::GetFilenameExtension( outfilename );
  std::string name = itksys::SystemTools::GetFilenameWithoutExtension( outfilename );
  std::string path = itksys::SystemTools::GetFilenamePath( outfilename );
  std::string defout = path + std::string( "/" ) + name + std::string("_def") + ext;
  displacementwriter->SetFileName( defout.c_str() );
  displacementwriter->SetInput( displacementTransform->GetDisplacementField() );
  displacementwriter->Update();

  //write the warped image into a file
  typedef double                                    OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >  OutputImageType;
  typedef itk::CastImageFilter<
                        MovingImageType,
                        OutputImageType >           CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();
  writer->SetFileName( argv[3] );
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->Update();

  std::cout << "After optimization affine params are: " <<  affineTransform->GetParameters() << std::endl;
  std::cout << "Test PASSED." << std::endl;
  return EXIT_SUCCESS;

}