1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkTextOutput.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkImageMaskSpatialObject.h"
#include "itkTimeProbe.h"
#include <iostream>
/**
* This test was copied for v4 metric from itkMattesMutualInformationImageToMetricTest
*/
/**
* TODO: check this text:
*
* This templated function tests the MattesMutualInformationImageToMetricv4
* class using an AfffineTransform and various interpolators.
*
* This test uses two 2D-Gaussians (standard deviation RegionSize/2)
* One is shifted by 5 pixels from the other.
*
* This test computes the mutual information value and derivatives
* for various shift values in (-10,10). Then it checks the numerical
* accuracy of computed derivatives by perturbing parameters by
* delta = 0.001.
*
*/
template< typename TImage, typename TInterpolator>
int TestMattesMetricWithAffineTransform(
TInterpolator * const interpolator, const bool useSampling, const size_t imageSize )
{
//------------------------------------------------------------
// Create two simple images
//------------------------------------------------------------
//Allocate Images
typedef TImage MovingImageType;
typedef TImage FixedImageType;
typedef typename MovingImageType::SizeValueType SizeValueType;
const unsigned int ImageDimension = MovingImageType::ImageDimension;
//Image size is scaled to represent sqrt(256^3)
typename MovingImageType::SizeType size = {{static_cast<SizeValueType>(imageSize),
static_cast<SizeValueType>(imageSize)}};
typename MovingImageType::IndexType index = {{0,0}};
typename MovingImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
typename MovingImageType::SpacingType imgSpacing;
imgSpacing[0] = 3.0;
imgSpacing[1] = 2.0;
typename MovingImageType::PointType imgOrigin;
imgOrigin[0] = 0.001;
imgOrigin[1] = -0.002;
typename MovingImageType::Pointer imgMoving = MovingImageType::New();
imgMoving->SetLargestPossibleRegion( region );
imgMoving->SetBufferedRegion( region );
imgMoving->SetRequestedRegion( region );
imgMoving->Allocate();
imgMoving->SetSpacing( imgSpacing );
imgMoving->SetOrigin( imgOrigin );
typename FixedImageType::Pointer imgFixed = FixedImageType::New();
imgFixed->SetLargestPossibleRegion( region );
imgFixed->SetBufferedRegion( region );
imgFixed->SetRequestedRegion( region );
imgFixed->Allocate();
imgFixed->SetSpacing( imgSpacing );
imgFixed->SetOrigin( imgOrigin );
// Fill images with a 2D gaussian
typedef itk::ImageRegionIterator<MovingImageType> ReferenceIteratorType;
typedef itk::ImageRegionIterator<FixedImageType> TargetIteratorType;
itk::Point<double,2> center;
center[0] = (double)region.GetSize()[0]/2.0;
center[1] = (double)region.GetSize()[1]/2.0;
const double s = (double)region.GetSize()[0]/2.0;
itk::Point<double,2> p;
// Set the displacement
itk::Vector<double,2> displacement;
displacement[0] = 5;
displacement[1] = 5;
{
ReferenceIteratorType ri(imgMoving,region);
ri.GoToBegin();
while(!ri.IsAtEnd())
{
p[0] = ri.GetIndex()[0];
p[1] = ri.GetIndex()[1];
itk::Vector<double,2> d = p-center;
d += displacement;
const double x = d[0];
const double y = d[1];
ri.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ri;
}
}
{
TargetIteratorType ti(imgFixed,region);
ti.GoToBegin();
while(!ti.IsAtEnd())
{
p[0] = ti.GetIndex()[0];
p[1] = ti.GetIndex()[1];
itk::Vector<double,2> d = p-center;
const double x = d[0];
const double y = d[1];
ti.Set( (unsigned char) ( 200.0 * std::exp( - ( x*x + y*y )/(s*s) ) ) );
++ti;
}
}
//Setup a fixed image mask for the image
typename MovingImageType::Pointer imgMovingMask = MovingImageType::New();
imgMovingMask->CopyInformation(imgMoving);
imgMovingMask->SetRegions(region);
imgMovingMask->Allocate(true); // initialize buffer to zero
typename FixedImageType::Pointer imgFixedMask = FixedImageType::New();
imgFixedMask->CopyInformation(imgFixed);
imgFixedMask->SetRegions(region);
imgFixedMask->Allocate(true); // initialize buffer to zero
{
{
//Set up a mask that only has every third voxel listed is used in fixed image region
int count=0;
ReferenceIteratorType ri1(imgMovingMask,region);
ri1.GoToBegin();
while(!ri1.IsAtEnd()) //Set all moving mask voxels to 1
{
if(count%3 == 0)
{
ri1.Set(1);
}
++ri1;
++count;
}
}
{
//Set up a mask that only has every other voxel listed is used in fixed image region
int count=0;
TargetIteratorType ti1(imgFixedMask,region);
ti1.GoToBegin();
while(!ti1.IsAtEnd())//Set a subset of fixed mask voxels to 1, so that requested number can be made more than possible number
{
if(count%2 == 0)
{
ti1.Set(1);
}
++ti1;
++count;
}
}
}
//-----------------------------------------------------------
// Set up a transformer
//-----------------------------------------------------------
typedef itk::AffineTransform< double, ImageDimension > TransformType;
typedef typename TransformType::ParametersType ParametersType;
typename TransformType::Pointer transformer = TransformType::New();
//------------------------------------------------------------
// Set up the metric
//------------------------------------------------------------
typedef itk::MattesMutualInformationImageToImageMetricv4<
FixedImageType, MovingImageType > MetricType;
typename MetricType::Pointer metric = MetricType::New();
// Sanity check before metric is run, these should be ITK_NULLPTR;
if( metric->GetJointPDFDerivatives().IsNotNull() )
{
return EXIT_FAILURE;
}
if( metric->GetJointPDF().IsNotNull() )
{
return EXIT_FAILURE;
}
// connect the interpolator
metric->SetMovingInterpolator( interpolator );
// connect the transform
metric->SetMovingTransform( transformer );
// connect the images to the metric
metric->SetFixedImage( imgFixed );
metric->SetMovingImage( imgMoving );
// set the number of histogram bins
metric->SetNumberOfHistogramBins( 50 );
// this test doesn't pass when using gradient image filters,
// presumably because of different deriviative scaling created
// by the filter output. The derivative results match those
// from when using the central difference calculator, but are
// scaled by a factor of 3.
metric->SetUseFixedImageGradientFilter(false);
metric->SetUseMovingImageGradientFilter(false);
//
//-------------------------------------------------------
// exercise misc member functions
//-------------------------------------------------------
std::cout << "Name of class: " << metric->GetNameOfClass() << std::endl;
std::cout << "No. of histogram bin used = " << metric->GetNumberOfHistogramBins() << std::endl;
if( metric->GetJointPDF().IsNotNull() )
{
std::cout << "JointPDF image info: " << metric->GetJointPDF() << std::endl;
}
if( metric->GetJointPDFDerivatives().IsNotNull() )
{
std::cout << "JointPDFDerivative image info: " << metric->GetJointPDFDerivatives() << std::endl;
}
std::cout << "GetNumberOfThreadsUsed: " << metric->GetNumberOfThreadsUsed() << std::endl;
metric->Print(std::cout);
// Now start the algorithmc testing
std::cout << "useSampling: " << useSampling << std::endl;
if( useSampling )
{
typedef typename MetricType::FixedSampledPointSetType PointSetType;
typedef typename PointSetType::PointType PointType;
typename PointSetType::Pointer pset(PointSetType::New());
unsigned int ind=0;
unsigned int ct=0;
itk::ImageRegionIteratorWithIndex<FixedImageType> It(imgFixed, imgFixed->GetLargestPossibleRegion() );
for( It.GoToBegin(); !It.IsAtEnd(); ++It )
{
// take every N^th point
if ( ct % 5 == 0 )
{
PointType pt;
imgFixed->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
pset->SetPoint(ind, pt);
ind++;
}
ct++;
}
std::cout << "Setting point set with " << ind << " points of " << imgFixed->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
metric->SetFixedSampledPointSet( pset );
metric->SetUseFixedSampledPointSet( true );
}
// initialize the metric before use
metric->Initialize();
//------------------------------------------------------------
// Set up a affine transform parameters
//------------------------------------------------------------
transformer->SetIdentity();
const unsigned int numberOfParameters = transformer->GetNumberOfParameters();
ParametersType parameters = transformer->GetParameters();
//---------------------------------------------------------
// Print out mutual information values
// for parameters[4] = {-10,10} (arbitrary choice)
//---------------------------------------------------------
typename MetricType::MeasureType metricValueWithDerivative;
typename MetricType::MeasureType metricValueOnly;
typename MetricType::DerivativeType derivative( numberOfParameters );
bool testFailed = false;
itk::TimeProbe timerGetValueAndDerivative;
itk::TimeProbe timerGetValue;
std::cout << "param[4]\tMI\tMI2\tdMI/dparam[4]" << std::endl;
for( double trans = -10; trans <= 10; trans += 0.5 )
{
parameters[4] = trans;
transformer->SetParameters( parameters );
timerGetValueAndDerivative.Start();
metric->GetValueAndDerivative( metricValueWithDerivative, derivative );
timerGetValueAndDerivative.Stop();
timerGetValue.Start();
metricValueOnly = metric->GetValue();
timerGetValue.Stop();
std::cout << "OffsetParam: " << trans << "\tvalueWithDerivative: " << metricValueWithDerivative << "\tvalueOnly: " <<
metricValueOnly << "\tderivative[4]: " << derivative[4];
// Make sure the metric value calculation is
// consistent
if( ! itk::Math::FloatAlmostEqual( metricValueWithDerivative, metricValueOnly, 8 ) )
{
std::cout << "\t[FAILED]: metricValueWithDerivative values do not match: ("
<< metricValueWithDerivative << " - " << metricValueOnly << ") = "
<< (metricValueWithDerivative - metricValueOnly ) << std::endl;
testFailed = true;
}
else
{
std::cout << "\t[PASSED]" << std::endl;
}
}
std::cerr << "GetValueAndDerivative took " << timerGetValueAndDerivative.GetMean() << " seconds.\n";
std::cerr << "GetValue took " << timerGetValue.GetMean() << " seconds.\n";
std::cout << "NumberOfValidPoints: " << metric->GetNumberOfValidPoints() << " of " << metric->GetVirtualRegion().GetNumberOfPixels() << std::endl;
//---------------------------------------------------------
// Check output gradients for numerical accuracy
//---------------------------------------------------------
parameters[4] = 0;
transformer->SetParameters( parameters );
metric->Initialize();
metric->GetValueAndDerivative( metricValueWithDerivative, derivative );
ParametersType parameters1Plus( numberOfParameters );
ParametersType parameters2Plus( numberOfParameters );
ParametersType parameters1Minus( numberOfParameters );
ParametersType parameters2Minus( numberOfParameters );
const double delta = 0.00001;
const double tolerance = (useSampling) ? static_cast<double>(0.075) : static_cast<double>(0.014);
for( unsigned int perturbParamIndex = 0; perturbParamIndex < numberOfParameters; ++perturbParamIndex )
{
//copy the parameters and perturb the current one.
for( unsigned int j = 0; j < numberOfParameters; ++j )
{
if( j == perturbParamIndex )
{
parameters1Plus[j] = parameters[perturbParamIndex] + delta; //positive perturbation
parameters2Plus[j] = parameters[perturbParamIndex] + 2.0*delta; //positive perturbation
parameters1Minus[j] = parameters[perturbParamIndex] - delta; //negative perturbation
parameters2Minus[j] = parameters[perturbParamIndex] - 2.0*delta; //negative perturbation
}
else
{
parameters1Plus[j] = parameters[j];
parameters1Minus[j] = parameters[j];
parameters2Plus[j] = parameters[j];
parameters2Minus[j] = parameters[j];
}
}
transformer->SetParameters( parameters1Plus );
const typename MetricType::MeasureType measure1Plus = metric->GetValue();
transformer->SetParameters( parameters1Minus );
const typename MetricType::MeasureType measure1Minus = metric->GetValue();
//Compute a first-order accuracy first order derivative
const double firstOrderApproxDerivative = -1.0 * ( measure1Plus - measure1Minus ) / ( 2.0 * delta );
//Compute a second-order accuracy first order derivative
transformer->SetParameters( parameters2Plus );
const typename MetricType::MeasureType measure2Plus = metric->GetValue();
transformer->SetParameters( parameters2Minus );
const typename MetricType::MeasureType measure2Minus = metric->GetValue();
//Computing second order derivative to get a handle on
//stability of estimates from the metric
const double secondOrderApproxDerivative = -1.0 * (
(-1.0/12.0)*measure2Plus + (+1.0/12.0)*measure2Minus +
(+2.0/3.0)*measure1Plus + (-2.0/3.0)*measure1Minus ) / ( delta );
const double ratio = derivative[perturbParamIndex]/secondOrderApproxDerivative;
std::cout << "perturbParamIndex: " << perturbParamIndex
<< "\tparameters[: " << parameters[perturbParamIndex]
<< "]\tmetric->GetDerivative[" << derivative[perturbParamIndex]
<< "]\n\t\tsecondOrderApproxDerivative[" << secondOrderApproxDerivative
<< "]\tfirstOrderApproxDerivative[" << firstOrderApproxDerivative
<< "]\tratio: " << ratio;
const double evalDiff = itk::Math::abs( ratio - 1.0 );
if ( evalDiff > tolerance )
{
std::cout << "\t[FAILED] computed derivative differ from central difference by (" << evalDiff << " > " << tolerance << ")." << std::endl;
testFailed = true;
}
else
{
std::cout << "\t[PASSED]" << std::endl;
}
}
if( testFailed )
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
/**
* Test entry point.
*/
int itkMattesMutualInformationImageToImageMetricv4Test(int, char *[] )
{
const size_t imageSize = 100; //NOTE 100 is very small
//typedef itk::Image<unsigned char,2> ImageType;
typedef itk::Image<double,2> ImageType;
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
// Test metric with a linear interpolator
typedef itk::LinearInterpolateImageFunction< ImageType, double > LinearInterpolatorType;
LinearInterpolatorType::Pointer linearInterpolator = LinearInterpolatorType::New();
std::cout << "Test metric with a linear interpolator." << std::endl;
bool useSampling = false;
int failed = true;
failed = TestMattesMetricWithAffineTransform<ImageType,LinearInterpolatorType>( linearInterpolator, useSampling, imageSize );
if ( failed )
{
std::cout << "Test failed when using all the pixels instead of sampling" << std::endl;
return EXIT_FAILURE;
}
useSampling = true;
failed = TestMattesMetricWithAffineTransform<ImageType,LinearInterpolatorType>( linearInterpolator, useSampling, imageSize );
if ( failed )
{
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
// Test metric with a BSpline interpolator
typedef itk::BSplineInterpolateImageFunction< ImageType, double > BSplineInterpolatorType;
BSplineInterpolatorType::Pointer bSplineInterpolator = BSplineInterpolatorType::New();
bSplineInterpolator->SetSplineOrder( 3 );
useSampling = false;
std::cout << "Test metric with a BSpline interpolator and no sampling." << std::endl;
failed = TestMattesMetricWithAffineTransform<ImageType,BSplineInterpolatorType>( bSplineInterpolator, useSampling, imageSize );
if ( failed )
{
std::cout << "Test failed when using all the pixels instead of sampling" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed" << std::endl;
return EXIT_SUCCESS;
}
|