1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/**
* Test program for MeanSquaresImageToImageMetricv4 and
* GradientDescentOptimizerv4 classes.
*
* Perform a registration using user-supplied images.
* No numerical verification is performed. Test passes as long
* as no exception occurs.
*/
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkCastImageFilter.h"
#include "itkCommand.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include <iomanip>
int itkMeanSquaresImageToImageMetricv4RegistrationTest(int argc, char *argv[])
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImageFile ";
std::cerr << " [numberOfIterations numberOfDisplacementIterations] ";
std::cerr << std::endl;
return EXIT_FAILURE;
}
std::cout << argc << std::endl;
unsigned int numberOfIterations = 2;
unsigned int numberOfDisplacementIterations = 2;
if( argc >= 5 )
{
numberOfIterations = atoi( argv[4] );
}
if( argc >= 6 )
{
numberOfDisplacementIterations = atoi( argv[5] );
}
std::cout << " iterations "<< numberOfIterations
<< " displacementIterations " << numberOfDisplacementIterations << std::endl;
const unsigned int Dimension = 2;
typedef double PixelType; //I assume png is unsigned short
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
//get the images
fixedImageReader->Update();
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
movingImageReader->Update();
MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
/** define a resample filter that will ultimately be used to deform the image */
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
/** create a composite transform holder for other transforms */
typedef itk::CompositeTransform<double, Dimension> CompositeType;
CompositeType::Pointer compositeTransform = CompositeType::New();
//create an affine transform
typedef itk::AffineTransform<double, Dimension>
AffineTransformType;
AffineTransformType::Pointer affineTransform = AffineTransformType::New();
affineTransform->SetIdentity();
std::cout <<" affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl;
typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform< double, Dimension> DisplacementTransformType;
DisplacementTransformType::Pointer displacementTransform = DisplacementTransformType::New();
typedef DisplacementTransformType::DisplacementFieldType DisplacementFieldType;
DisplacementFieldType::Pointer field = DisplacementFieldType::New();
// set the field to be the same as the fixed image region, which will
// act by default as the virtual domain in this example.
field->SetRegions( fixedImage->GetLargestPossibleRegion() );
//make sure the field has the same spatial information as the image
field->CopyInformation( fixedImage );
std::cout << "fixedImage->GetLargestPossibleRegion(): "
<< fixedImage->GetLargestPossibleRegion() << std::endl;
field->Allocate();
// Fill it with 0's
DisplacementTransformType::OutputVectorType zeroVector;
zeroVector.Fill( 0 );
field->FillBuffer( zeroVector );
// Assign to transform
displacementTransform->SetDisplacementField( field );
displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField( 5 );
displacementTransform->SetGaussianSmoothingVarianceForTheTotalField( 6 );
//identity transform for fixed image
typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
identityTransform->SetIdentity();
// The metric
typedef itk::MeanSquaresImageToImageMetricv4 < FixedImageType, MovingImageType > MetricType;
typedef MetricType::FixedSampledPointSetType PointSetType;
MetricType::Pointer metric = MetricType::New();
typedef PointSetType::PointType PointType;
PointSetType::Pointer pset(PointSetType::New());
unsigned long ind=0,ct=0;
itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
for( It.GoToBegin(); !It.IsAtEnd(); ++It )
{
// take every N^th point
if ( ct % 20 == 0 ) // about a factor of 5 speed-up over dense
{
PointType pt;
fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
pset->SetPoint(ind, pt);
ind++;
}
ct++;
}
std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
metric->SetFixedSampledPointSet( pset );
metric->SetUseFixedSampledPointSet( true );
std::cout << "Testing metric with point set..." << std::endl;
// Assign images and transforms.
// By not setting a virtual domain image or virtual domain settings,
// the metric will use the fixed image for the virtual domain.
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetFixedTransform( identityTransform );
metric->SetMovingTransform( affineTransform );
const bool gaussian = false;
metric->SetUseMovingImageGradientFilter( gaussian );
metric->SetUseFixedImageGradientFilter( gaussian );
metric->Initialize();
typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
shiftScaleEstimator->SetMetric(metric);
std::cout << "First do an affine registration " << std::endl;
typedef itk::GradientDescentOptimizerv4 OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
optimizer->StartOptimization();
std::cout << "Number of threads: metric: " << metric->GetNumberOfThreadsUsed() << " optimizer: " << optimizer->GetNumberOfThreads() << std::endl;
std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;
std::cout << "Follow affine with deformable registration " << std::endl;
// now add the displacement field to the composite transform
compositeTransform->AddTransform( affineTransform );
compositeTransform->AddTransform( displacementTransform );
compositeTransform->SetAllTransformsToOptimizeOn(); //Set back to optimize all.
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); //set to optimize the displacement field
metric->SetMovingTransform( compositeTransform );
metric->SetUseFixedSampledPointSet( false );
metric->Initialize();
// Optimizer
RegistrationParameterScalesFromShiftType::ScalesType displacementScales( displacementTransform->GetNumberOfLocalParameters() );
displacementScales.Fill(1);
if( 0 )
{
optimizer->SetScales( displacementScales );
}
else
{
optimizer->SetScalesEstimator( shiftScaleEstimator );
}
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfDisplacementIterations );
try
{
if( numberOfDisplacementIterations > 0 )
optimizer->StartOptimization();
else
std::cout << "** SKIPPING DISPLACEMENT FIELD OPT\n";
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during deformation Optimization:" << std::endl;
std::cout << e.GetLocation() << std::endl;
std::cout << e.GetDescription() << std::endl;
std::cout << e.what() << std::endl;
std::cout << "Test FAILED." << std::endl;
return EXIT_FAILURE;
}
std::cout << "...finished. " << std::endl;
std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;
//warp the image with the displacement field
resample->SetTransform( compositeTransform );
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 0 );
resample->Update();
//write out the displacement field
typedef itk::ImageFileWriter< DisplacementFieldType > DisplacementWriterType;
DisplacementWriterType::Pointer displacementwriter = DisplacementWriterType::New();
std::string outfilename( argv[3] );
std::string ext = itksys::SystemTools::GetFilenameExtension( outfilename );
std::string name = itksys::SystemTools::GetFilenameWithoutExtension( outfilename );
std::string path = itksys::SystemTools::GetFilenamePath( outfilename );
std::string defout = path + std::string( "/" ) + name + std::string("_def") + ext;
displacementwriter->SetFileName( defout.c_str() );
displacementwriter->SetInput( displacementTransform->GetDisplacementField() );
displacementwriter->Update();
//write the warped image into a file
typedef double OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
MovingImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
std::cout << "After optimization affine params are: " << affineTransform->GetParameters() << std::endl;
std::cout << "Test PASSED." << std::endl;
return EXIT_SUCCESS;
}
|