1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/**
* Test program for MeanSquaresImageToImageMetricv4 and
* LBFGSOptimizerv4 classes.
*
* Perform a registration using user-supplied images.
* No numerical verification is performed. Test passes as long
* as no exception occurs.
* A regression test is performed using ctest.
*/
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkLBFGSOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkCastImageFilter.h"
#include "itkCommand.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include <iomanip>
int itkMeanSquaresImageToImageMetricv4RegistrationTest2(int argc, char *argv[])
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImageFile ";
std::cerr << " [gradientTolerance=1e-4] [max function iterations=100] [lineSearchTol=0.9] [stepLength=1.0] [trace-debug=false]";
std::cerr << std::endl;
return EXIT_FAILURE;
}
double gTolerance = 1e-4; // Gradient magnitude tolerance
int maxIterations = 100; // Maximum number of iterations
double lineSearchTol = 0.9; // Line search tolerance
double stepLength = 1.0; // Default step length
bool trace = false; // Tracing
if( argc > 4 )
{
gTolerance = atof( argv[4] );
}
if( argc > 5 )
{
maxIterations = atoi( argv[5] );
}
if( argc > 6 )
{
lineSearchTol = atof( argv[6] );
}
if( argc > 7 )
{
stepLength = atof( argv[7] );
}
if( argc > 8 )
{
trace = static_cast<bool>( atoi( argv[8] ) );
}
std::cout << argc << std::endl;
std::cout << "gTolerance: " << gTolerance << " maxIterations: " << maxIterations << " lineSearchTol: " << lineSearchTol << " stepLength: " << stepLength << " trace: " << trace << std::endl;
/** load the images **/
const unsigned int Dimension = 2;
typedef double PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
fixedImageReader->Update();
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
movingImageReader->Update();
MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
/** define a resample filter that will ultimately be used to deform the image */
typedef itk::ResampleImageFilter< MovingImageType, FixedImageType > ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
/** create a composite transform holder for other transforms */
typedef itk::CompositeTransform<double, Dimension> CompositeType;
CompositeType::Pointer compositeTransform = CompositeType::New();
// create an affine transform
typedef itk::AffineTransform<double, Dimension>
AffineTransformType;
AffineTransformType::Pointer affineTransform = AffineTransformType::New();
affineTransform->SetIdentity();
std::cout <<" affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl;
// identity transform for fixed image
typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
identityTransform->SetIdentity();
// the metric
typedef itk::MeanSquaresImageToImageMetricv4 < FixedImageType, MovingImageType > MetricType;
typedef MetricType::FixedSampledPointSetType PointSetType;
MetricType::Pointer metric = MetricType::New();
typedef PointSetType::PointType PointType;
PointSetType::Pointer pset(PointSetType::New());
unsigned long ind=0,ct=0;
itk::ImageRegionIteratorWithIndex<FixedImageType> it(fixedImage, fixedImage->GetLargestPossibleRegion() );
for( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
// take every N^th point
if ( 1 /*ct % 4 == 0*/ )
{
PointType pt;
fixedImage->TransformIndexToPhysicalPoint( it.GetIndex(), pt);
pset->SetPoint(ind, pt);
ind++;
}
ct++;
}
std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
metric->SetFixedSampledPointSet( pset );
metric->SetUseFixedSampledPointSet( true );
std::cout << "Testing metric with point set..." << std::endl;
// Assign images and transforms.
// By not setting a virtual domain image or virtual domain settings,
// the metric will use the fixed image for the virtual domain.
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetFixedTransform( identityTransform );
metric->SetMovingTransform( affineTransform );
const bool gaussian = false;
metric->SetUseMovingImageGradientFilter( gaussian );
metric->SetUseFixedImageGradientFilter( gaussian );
metric->Initialize();
typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
shiftScaleEstimator->SetMetric(metric);
std::cout << "Do an affine registration: " << std::endl;
// optimizer
typedef itk::LBFGSOptimizerv4 OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetScalesEstimator( shiftScaleEstimator );
optimizer->SetTrace( trace );
optimizer->SetMaximumNumberOfFunctionEvaluations( maxIterations );
optimizer->SetGradientConvergenceTolerance( gTolerance );
optimizer->SetLineSearchAccuracy( lineSearchTol );
optimizer->SetDefaultStepLength( stepLength );
std::cout << "Initial stop description = " << optimizer->GetStopConditionDescription() << std::endl;
// optimize
try
{
optimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cerr << "Exception thrown ! " << std::endl;
std::cerr << "An error occurred during deformation Optimization:" << std::endl;
std::cerr << e.GetLocation() << std::endl;
std::cerr << e.GetDescription() << std::endl;
std::cerr << e.what() << std::endl;
std::cerr << "Test FAILED." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Number of threads: metric: " << metric->GetNumberOfThreadsUsed() << " optimizer: " << optimizer->GetNumberOfThreads() << std::endl;
std::cout << "Scales: " << optimizer->GetScales() << " DoEstimateScales: " << optimizer->GetDoEstimateScales() << std::endl;
std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;
//warp the image with the transform
resample->SetTransform( affineTransform );
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 0 );
resample->Update();
//write the warped image into a file
typedef double OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter< MovingImageType, OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
std::cout << "After optimization affine params are: " << affineTransform->GetParameters() << std::endl;
return EXIT_SUCCESS;
}
|