File: itkMeanSquaresImageToImageMetricv4RegistrationTest2.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (232 lines) | stat: -rw-r--r-- 9,201 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

/**
 * Test program for MeanSquaresImageToImageMetricv4 and
 * LBFGSOptimizerv4 classes.
 *
 * Perform a registration using user-supplied images.
 * No numerical verification is performed. Test passes as long
 * as no exception occurs.
 * A regression test is performed using ctest.
 */

#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkLBFGSOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"

#include "itkCastImageFilter.h"

#include "itkCommand.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include <iomanip>

int itkMeanSquaresImageToImageMetricv4RegistrationTest2(int argc, char *argv[])
{

  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile ";
    std::cerr << " [gradientTolerance=1e-4] [max function iterations=100] [lineSearchTol=0.9] [stepLength=1.0] [trace-debug=false]";
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }

  double gTolerance       = 1e-4;  // Gradient magnitude tolerance
  int    maxIterations    = 100;   // Maximum number of iterations
  double lineSearchTol    = 0.9;   // Line search tolerance
  double stepLength       = 1.0;   // Default step length
  bool   trace            = false; // Tracing

  if( argc > 4 )
    {
    gTolerance = atof( argv[4] );
    }
  if( argc > 5 )
    {
    maxIterations = atoi( argv[5] );
    }
  if( argc > 6 )
    {
    lineSearchTol = atof( argv[6] );
    }
  if( argc > 7 )
    {
    stepLength = atof( argv[7] );
    }
  if( argc > 8 )
    {
    trace = static_cast<bool>( atoi( argv[8] ) );
    }

  std::cout << argc << std::endl;
  std::cout << "gTolerance: " << gTolerance << " maxIterations: " << maxIterations << " lineSearchTol: " << lineSearchTol << " stepLength: " << stepLength << " trace: " << trace << std::endl;

  /** load the images **/

  const unsigned int Dimension = 2;
  typedef double PixelType;

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );

  fixedImageReader->Update();
  FixedImageType::Pointer  fixedImage = fixedImageReader->GetOutput();
  movingImageReader->Update();
  MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

  /** define a resample filter that will ultimately be used to deform the image */
  typedef itk::ResampleImageFilter< MovingImageType, FixedImageType >    ResampleFilterType;
  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  /** create a composite transform holder for other transforms  */
  typedef itk::CompositeTransform<double, Dimension>    CompositeType;
  CompositeType::Pointer compositeTransform = CompositeType::New();

  // create an affine transform
  typedef itk::AffineTransform<double, Dimension>
                                                    AffineTransformType;
  AffineTransformType::Pointer affineTransform = AffineTransformType::New();
  affineTransform->SetIdentity();
  std::cout <<" affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl;

  // identity transform for fixed image
  typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
  IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  // the metric
  typedef itk::MeanSquaresImageToImageMetricv4 < FixedImageType, MovingImageType >  MetricType;
  typedef MetricType::FixedSampledPointSetType                                      PointSetType;
  MetricType::Pointer metric = MetricType::New();

  typedef PointSetType::PointType     PointType;
  PointSetType::Pointer               pset(PointSetType::New());
  unsigned long ind=0,ct=0;
  itk::ImageRegionIteratorWithIndex<FixedImageType> it(fixedImage, fixedImage->GetLargestPossibleRegion() );

  for( it.GoToBegin(); !it.IsAtEnd(); ++it )
    {
    // take every N^th point
    if ( 1 /*ct % 4 == 0*/  )
      {
        PointType pt;
        fixedImage->TransformIndexToPhysicalPoint( it.GetIndex(), pt);
        pset->SetPoint(ind, pt);
        ind++;
      }
      ct++;
    }
  std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
  metric->SetFixedSampledPointSet( pset );
  metric->SetUseFixedSampledPointSet( true );
  std::cout << "Testing metric with point set..." << std::endl;


  // Assign images and transforms.
  // By not setting a virtual domain image or virtual domain settings,
  // the metric will use the fixed image for the virtual domain.
  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetFixedTransform( identityTransform );
  metric->SetMovingTransform( affineTransform );
  const bool gaussian = false;
  metric->SetUseMovingImageGradientFilter( gaussian );
  metric->SetUseFixedImageGradientFilter( gaussian );
  metric->Initialize();

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
  RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
  shiftScaleEstimator->SetMetric(metric);

  std::cout << "Do an affine registration: " << std::endl;

  // optimizer
  typedef itk::LBFGSOptimizerv4  OptimizerType;
  OptimizerType::Pointer  optimizer = OptimizerType::New();
  optimizer->SetMetric( metric );
  optimizer->SetScalesEstimator( shiftScaleEstimator );

  optimizer->SetTrace( trace );
  optimizer->SetMaximumNumberOfFunctionEvaluations( maxIterations );
  optimizer->SetGradientConvergenceTolerance( gTolerance );
  optimizer->SetLineSearchAccuracy( lineSearchTol );
  optimizer->SetDefaultStepLength( stepLength );
  std::cout << "Initial stop description   = " << optimizer->GetStopConditionDescription() << std::endl;

  // optimize
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cerr << "Exception thrown ! " << std::endl;
    std::cerr << "An error occurred during deformation Optimization:" << std::endl;
    std::cerr << e.GetLocation() << std::endl;
    std::cerr << e.GetDescription() << std::endl;
    std::cerr << e.what()    << std::endl;
    std::cerr << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Number of threads: metric: " << metric->GetNumberOfThreadsUsed() << " optimizer: " << optimizer->GetNumberOfThreads() << std::endl;
  std::cout << "Scales: " << optimizer->GetScales() << " DoEstimateScales: " << optimizer->GetDoEstimateScales() << std::endl;
  std::cout << "GetNumberOfSkippedFixedSampledPoints: " << metric->GetNumberOfSkippedFixedSampledPoints() << std::endl;

  //warp the image with the transform
  resample->SetTransform( affineTransform );
  resample->SetInput( movingImageReader->GetOutput() );
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();

  //write the warped image into a file
  typedef double                                                    OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >                  OutputImageType;
  typedef itk::CastImageFilter< MovingImageType, OutputImageType >  CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >                   WriterType;

  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();
  writer->SetFileName( argv[3] );
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->Update();

  std::cout << "After optimization affine params are: " <<  affineTransform->GetParameters() << std::endl;
  return EXIT_SUCCESS;

}