1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkTranslationTransform.h"
/*
* Simple test to run using unix 'time' function for speed test.
*/
int itkMeanSquaresImageToImageMetricv4SpeedTest(int argc, char *argv[] )
{
if( argc < 3 )
{
std::cerr << "usage: " << argv[0] << ": image-dimension number-of-reps" << std::endl;
return EXIT_FAILURE;
}
int imageSize = atoi( argv[1] );
int numberOfReps = atoi( argv[2] );
std::cout << "image dim: " << imageSize << ", reps: " << numberOfReps << std::endl;
const unsigned int imageDimensionality = 3;
typedef itk::Image< double, imageDimensionality > ImageType;
ImageType::SizeType size;
size.Fill( imageSize );
ImageType::IndexType index;
index.Fill( 0 );
ImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
ImageType::SpacingType spacing;
spacing.Fill(1.0);
ImageType::PointType origin;
origin.Fill(0);
ImageType::DirectionType direction;
direction.SetIdentity();
/* Create simple test images. */
ImageType::Pointer fixedImage = ImageType::New();
fixedImage->SetRegions( region );
fixedImage->SetSpacing( spacing );
fixedImage->SetOrigin( origin );
fixedImage->SetDirection( direction );
fixedImage->Allocate();
ImageType::Pointer movingImage = ImageType::New();
movingImage->SetRegions( region );
movingImage->SetSpacing( spacing );
movingImage->SetOrigin( origin );
movingImage->SetDirection( direction );
movingImage->Allocate();
/* Fill images */
itk::ImageRegionIterator<ImageType> itFixed( fixedImage, region );
itFixed.GoToBegin();
unsigned int count = 1;
while( !itFixed.IsAtEnd() )
{
itFixed.Set( count );
count++;
++itFixed;
}
itk::ImageRegionIteratorWithIndex<ImageType> itMoving( movingImage, region );
itMoving.GoToBegin();
count = 1;
while( !itMoving.IsAtEnd() )
{
itMoving.Set( count*count );
count++;
++itMoving;
}
/* Transforms */
typedef itk::TranslationTransform<double,imageDimensionality> FixedTransformType;
typedef itk::TranslationTransform<double,imageDimensionality> MovingTransformType;
FixedTransformType::Pointer fixedTransform = FixedTransformType::New();
MovingTransformType::Pointer movingTransform = MovingTransformType::New();
fixedTransform->SetIdentity();
movingTransform->SetIdentity();
/* The metric */
typedef itk::MeanSquaresImageToImageMetricv4< ImageType, ImageType, ImageType > MetricType;
MetricType::Pointer metric = MetricType::New();
/* Assign images and transforms.
* By not setting a virtual domain image or virtual domain settings,
* the metric will use the fixed image for the virtual domain. */
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetFixedTransform( fixedTransform );
metric->SetMovingTransform( movingTransform );
/* Initialize. */
std::cout << "Calling Initialize..." << std::endl;
metric->Initialize();
// Evaluate with GetValueAndDerivative
MetricType::MeasureType valueReturn1;
MetricType::DerivativeType derivativeReturn;
MetricType::MeasureType sum = itk::NumericTraits<MetricType::MeasureType>::ZeroValue();
for( int r=0; r < numberOfReps; r++ )
{
metric->GetValueAndDerivative( valueReturn1, derivativeReturn );
//Sum results to prevent optimizations
sum += valueReturn1 + derivativeReturn[0];
}
std::cout << "sum: " << sum << std::endl;
return EXIT_SUCCESS;
}
|