File: itkMetricImageGradientTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (473 lines) | stat: -rw-r--r-- 18,621 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkImage.h"
#include "itkMath.h"
#include "itkIntTypes.h"
#include "itkTestingMacros.h"
#include "itkCentralDifferenceImageFunction.h"
#include "itkResampleImageFilter.h"
#include "itkAffineTransform.h"
#include "itkContinuousIndex.h"
#include <iomanip>
#include "itkLinearInterpolateImageFunction.h"
#include "itkImageFileWriter.h"
#include "itkImageToImageMetricv4.h"

/*
 * Test moving image gradients computed inside metricv4
 *
 * For simplicity, fixed transform is the identity transform.
 *
 * Theoretical background:
 *
 * x: virtual space, the same as fix space by default
 * y: moving space
 *
 * moving transform (T) gives a transform
 *    from the virtual domain (x) to moving domain (y), i.e.:
 *      y = T (x), x->y
 *
 * This test validates computing Dm from with and w/out gradient filter.
 *
 * Dm is the gradient of moving iamge m at y,
 * and it is the output of:
 *  TransformAndEvaluateMovingPoint
 *
 */
template<unsigned int ImageDimensionality, typename TTransform>
double itkMetricImageGradientTestRunTest( unsigned int imageSize, typename TTransform::Pointer transform, double rotation,
                              bool verbose,
                              std::string & outputPath );

namespace itk
{
/*
 * \class VanilaImageToImageMetricv4GetValueAndDerivativeThreader
 * \brief A vanilla class of metric thread, required to implement the virtual base class
 */

template<typename TDomainPartitioner, typename TImageToImageMetric>
class VanilaImageToImageMetricv4GetValueAndDerivativeThreader
: public ImageToImageMetricv4GetValueAndDerivativeThreader<TDomainPartitioner, TImageToImageMetric>
{
public:
  /** Standard class typedefs. */
  typedef VanilaImageToImageMetricv4GetValueAndDerivativeThreader                                     Self;
  typedef ImageToImageMetricv4GetValueAndDerivativeThreader<TDomainPartitioner, TImageToImageMetric>  Superclass;

  typedef SmartPointer<Self>        Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  itkTypeMacro( VanilaImageToImageMetricv4GetValueAndDerivativeThreader, ImageToImageMetricv4GetValueAndDerivativeThreader );

  itkNewMacro( Self );

  typedef typename Superclass::DomainType     DomainType;
  typedef typename Superclass::AssociateType  AssociateType;

  typedef typename Superclass::ImageToImageMetricv4Type         ImageToImageMetricv4Type;
  typedef typename Superclass::VirtualPointType                 VirtualPointType;
  typedef typename Superclass::VirtualIndexType                 VirtualIndexType;
  typedef typename Superclass::FixedImagePointType              FixedImagePointType;
  typedef typename Superclass::FixedImagePixelType              FixedImagePixelType;
  typedef typename Superclass::FixedImageGradientType           FixedImageGradientType;
  typedef typename Superclass::MovingImagePointType             MovingImagePointType;
  typedef typename Superclass::MovingImagePixelType             MovingImagePixelType;
  typedef typename Superclass::MovingImageGradientType          MovingImageGradientType;
  typedef typename Superclass::MeasureType                      MeasureType;
  typedef typename Superclass::DerivativeType                   DerivativeType;
  typedef typename Superclass::DerivativeValueType              DerivativeValueType;

protected:
  VanilaImageToImageMetricv4GetValueAndDerivativeThreader()
  {
  }

  /** This function computes the local voxel-wise contribution of
   *  the metric to the global integral of the metric/derivative.
   */
  virtual bool ProcessPoint(
                             const VirtualIndexType &         itkNotUsed(virtualIndex),
                             const VirtualPointType &         itkNotUsed(virtualPoint),
                             const FixedImagePointType &      itkNotUsed(mappedFixedPoint),
                             const FixedImagePixelType &      itkNotUsed(mappedFixedPixelValue),
                             const FixedImageGradientType &   itkNotUsed(mappedFixedImageGradient),
                             const MovingImagePointType &     itkNotUsed(mappedMovingPoint),
                             const MovingImagePixelType &     itkNotUsed(mappedMovingPixelValue),
                             const MovingImageGradientType &  itkNotUsed(mappedMovingImageGradient),
                             MeasureType &                    itkNotUsed(metricValueReturn),
                             DerivativeType &                 itkNotUsed(localDerivativeReturn),
                             const ThreadIdType               itkNotUsed(threadId) ) const ITK_OVERRIDE
  {
    return false;
  }

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(VanilaImageToImageMetricv4GetValueAndDerivativeThreader);
};

/* \class VanillaImageToImageMetricv4
 *
 * \brief A vanilla metric for ImageToImageMetricv4 since we need to
 * access the protected methods by adding friend class.
 */
template<typename TFixedImage, typename TMovingImage, typename TVirtualImage = TFixedImage>
class VanillaImageToImageMetricv4 : public ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage>
{
public:
  /** Standard class typedefs. */
  typedef VanillaImageToImageMetricv4                                     Self;
  typedef ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage>  Superclass;

  typedef SmartPointer<Self>        Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(VanillaImageToImageMetricv4, ImageToImageMetricv4);

  /** Superclass types */
  typedef typename Superclass::MeasureType    MeasureType;
  typedef typename Superclass::DerivativeType DerivativeType;

  typedef typename Superclass::FixedImagePointType    FixedImagePointType;
  typedef typename Superclass::FixedImagePixelType    FixedImagePixelType;
  typedef typename Superclass::FixedImageGradientType FixedImageGradientType;

  typedef typename Superclass::MovingImagePointType     MovingImagePointType;
  typedef typename Superclass::MovingImagePixelType     MovingImagePixelType;
  typedef typename Superclass::MovingImageGradientType  MovingImageGradientType;

  typedef typename Superclass::MovingTransformType        MovingTransformType;
  typedef typename Superclass::JacobianType               JacobianType;
  typedef typename Superclass::VirtualImageType           VirtualImageType;
  typedef typename Superclass::VirtualIndexType           VirtualIndexType;
  typedef typename Superclass::VirtualPointType           VirtualPointType;
  typedef typename Superclass::VirtualPointSetType        VirtualPointSetType;

  /* Image dimension accessors */
  itkStaticConstMacro(VirtualImageDimension, typename TVirtualImage::ImageDimensionType, TVirtualImage::ImageDimension);
  itkStaticConstMacro(FixedImageDimension,   typename TFixedImage::ImageDimensionType,   TFixedImage::ImageDimension);
  itkStaticConstMacro(MovingImageDimension,  typename TMovingImage::ImageDimensionType,  TMovingImage::ImageDimension);

protected:
  VanillaImageToImageMetricv4()
  {
    this->m_DenseGetValueAndDerivativeThreader = VanillaDenseGetValueAndDerivativeThreaderType::New();
    this->m_SparseGetValueAndDerivativeThreader = VanillaSparseGetValueAndDerivativeThreaderType::New();
  }

  virtual ~VanillaImageToImageMetricv4() ITK_OVERRIDE {}

  // template <unsigned int VVirtualImageDimension, typename TMovingTransformType>
  // template <>
  friend double ::itkMetricImageGradientTestRunTest<VirtualImageDimension, MovingTransformType>(
      unsigned int imageSize, typename MovingTransformType::Pointer transform, double rotation, bool verbose,
      std::string & outputPath );

  typedef VanilaImageToImageMetricv4GetValueAndDerivativeThreader<
      ThreadedImageRegionPartitioner<Superclass::VirtualImageDimension>, Superclass>
  VanillaDenseGetValueAndDerivativeThreaderType;

  typedef VanilaImageToImageMetricv4GetValueAndDerivativeThreader<ThreadedIndexedContainerPartitioner, Superclass>
  VanillaSparseGetValueAndDerivativeThreaderType;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(VanillaImageToImageMetricv4);
};

}

template<unsigned int ImageDimensionality, typename TTransform>
double itkMetricImageGradientTestRunTest( unsigned int imageSize, typename TTransform::Pointer transform, double rotation,
                              bool verbose,
                              std::string & outputPath )
{
  // verbose = true;

  typedef itk::Image<double, ImageDimensionality> ImageType;

  typename ImageType::SizeType size;
  size.Fill( imageSize );
  typename ImageType::IndexType virtualIndex;
  virtualIndex.Fill( 0 );
  typename ImageType::RegionType region;
  region.SetSize( size );
  region.SetIndex( virtualIndex );
  typename ImageType::SpacingType spacing;
  spacing.Fill( 1.0 );
  typename ImageType::PointType origin;
  origin.Fill( 0.0 );
  typename ImageType::DirectionType direction;
  direction.SetIdentity();

  // Create simple test images.
  typename ImageType::Pointer image = ImageType::New();
  image->SetRegions( region );
  image->SetSpacing( spacing );
  image->SetOrigin( origin );
  image->SetDirection( direction );
  image->Allocate();

  // Fill images, with a border
  itk::ImageRegionIteratorWithIndex<ImageType> it( image, region );
  it.GoToBegin();
  unsigned int imageBorder = 20;
  while ( !it.IsAtEnd() )
    {
    it.Set( 0 );
    bool awayfromborder = true;
    for ( unsigned int j = 0; j < ImageDimensionality; j++ )
     {
      if ( it.GetIndex()[j] < static_cast<typename ImageType::IndexValueType>(imageBorder)
           || static_cast<unsigned int> (std::abs( static_cast<float> (it.GetIndex()[j]) - static_cast<float>(size[j]) ) ) < imageBorder )
        {
        awayfromborder = false;
        }
      }
    if ( awayfromborder )
      {
      it.Set( 1 );
      }
    ++it;
    }

  // Create a "moving" image
  typedef itk::ResampleImageFilter<ImageType, ImageType> ResampleFilterType;
  typename ResampleFilterType::Pointer resample = ResampleFilterType::New();
  resample->SetTransform( transform );
  resample->SetInput( image );
  resample->SetOutputParametersFromImage( image );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();
  typename ImageType::Pointer movingImage = resample->GetOutput();

  // The inverse of the transform is what we'd be estimating
  // as the moving transform during registration
  //  typename TTransform::InverseTransformBasePointer
  //      movingTransform = transform->GetInverseTransform();

  typename TTransform::Pointer movingTransform =
      dynamic_cast<TTransform *>( transform->GetInverseTransform().GetPointer() );

  // Write out the images if requested, for debugging only
  if (false)
    {
    typedef double OutputPixelType;

    typedef itk::Image<OutputPixelType, ImageDimensionality> OutputImageType;

    typedef itk::ImageFileWriter<OutputImageType> WriterType;

    typename WriterType::Pointer writer = WriterType::New();
    // moving
    writer->SetFileName( outputPath + "_moving.nii.gz" );
    writer->SetInput( movingImage );
    writer->Update();
    }

  virtualIndex.Fill( imageBorder );

  //Image gradient from moving image
  typename ImageType::PointType virtualPoint;
  image->TransformIndexToPhysicalPoint( virtualIndex, virtualPoint );
  typename ImageType::PointType mappedPoint = movingTransform->TransformPoint( virtualPoint );

  typedef itk::VanillaImageToImageMetricv4<ImageType, ImageType> MetricType;

  // Dm: ground truth
  typename MetricType::MovingImageGradientType mappedMovingImageGradientGroundtruth;
  // Dm: will be computed from metric class
  typename MetricType::MovingImageGradientType mappedMovingImageGradient;

  // compute Dm directly from graient image
  typedef itk::CentralDifferenceImageFunction<ImageType, double> CentralDifferenceCalculatorType;
  typename CentralDifferenceCalculatorType::Pointer movingCalculator = CentralDifferenceCalculatorType::New();
  movingCalculator->UseImageDirectionOn();
  movingCalculator->SetInputImage( movingImage );
  mappedMovingImageGradientGroundtruth = movingCalculator->Evaluate( mappedPoint );

  // compute Dm using Metricv4 routine
  typename ImageType::PointType mappedMovingPoint;
  typename ImageType::PixelType mappedMovingPixelValue;
  typename MetricType::Pointer metric = MetricType::New();

  metric->SetFixedImage( image );
  metric->SetMovingImage( movingImage );
  metric->SetMovingTransform( movingTransform );

  // run 0: with gradient filter: on
  // run 1: with gradient filter: off

  double sumc = 0.0;
  for ( unsigned int i = 0; i < 2; i++ )
    {
    bool b2 = false;
    switch ( i )
      {
      case 0:
        b2 = false;
        break;
      case 1:
        b2 = true;
        break;
      }

    metric->SetUseMovingImageGradientFilter( b2 );
    metric->Initialize();

    bool b = metric->TransformAndEvaluateMovingPoint( virtualPoint, mappedMovingPoint, mappedMovingPixelValue );

    // computed explicitly as ground truth
    if ( b )
      {
      metric->ComputeMovingImageGradientAtPoint( mappedMovingPoint, mappedMovingImageGradient );

      vnl_vector_ref<double> p2 = mappedMovingImageGradient.GetVnlVector();
      vnl_vector_ref<double> p1 = mappedMovingImageGradientGroundtruth.GetVnlVector();

      double norm1 = p1.two_norm();
      double norm2 = p2.two_norm();
      if ( norm1 > 0 && norm2 > 0 )
        {
        double correlation = dot_product( p2, p1 ) / ( norm1 * norm2 );
        sumc += correlation;
        }

      if( verbose )
        {
        std::cout << "use gradient filter: " << metric->GetUseMovingImageGradientFilter() << std::endl;
        std::cout << "rotation: " << rotation << std::endl << "virtualIndex: " << virtualIndex << std::endl
            << "virtualPoint: " << virtualPoint << std::endl
            << "mappedMovingPoint: " << mappedMovingPoint << std::endl
            << "mappedMovingGradient: " << mappedMovingImageGradient << std::endl
            << "mappedMovingImageGradientGroundtruth: " << mappedMovingImageGradientGroundtruth << std::endl;
        }
      } // if (b)
    }
  return sumc / static_cast<double>(2.0); //correlation;
}

//////////////////////////////////////////////////////
int itkMetricImageGradientTest( int argc, char *argv[] )
{
  typedef unsigned int DimensionSizeType;
  DimensionSizeType imageSize = 60;
  unsigned int dimensionality = 3;
  double minimumAverage = itk::NumericTraits<double>::max();
  double rotationDegrees = static_cast<double>( 0.0 ); // (3.0);
  double maxDegrees = static_cast<double>( 359.0 );
  double degreeStep = static_cast<double>( 15.0 ); //(3.0);

  std::string outputPath( "" );
  if ( argc >= 2 )
    {
    std::string path( argv[1] );
    outputPath = path;
    }
  std::string commandName( argv[0] );
  outputPath += commandName;
  std::cout << outputPath << std::endl;

  for(dimensionality = 2; dimensionality <= 3; dimensionality++)
    {
    std::cout << "testing dimension: " << dimensionality << std::endl;
    minimumAverage = itk::NumericTraits<double>::max();
    for ( rotationDegrees = static_cast<double>( 0.0 ); rotationDegrees < maxDegrees; rotationDegrees += degreeStep )
      {

      std::cerr << std::setw( 3 );
      double average = minimumAverage;

      if ( dimensionality == 2 )
        {
        // Transform
        typedef itk::Image<double, 2> ImageType;

        typedef itk::AffineTransform<double, 2> TransformType;

        TransformType::Pointer transform = TransformType::New();
        transform->SetIdentity();

        transform->Rotate2D( itk::Math::pi * rotationDegrees / 180 );
        ImageType::PointType center;
        center.Fill( ( imageSize - 1 ) / 2.0 );
        transform->SetCenter( center );

        typedef itk::Image<double, 2> ImageType;

        typedef itk::VanillaImageToImageMetricv4<ImageType, ImageType> MetricType;

        average = itkMetricImageGradientTestRunTest<2, MetricType::MovingTransformType>( imageSize,
            MetricType::MovingTransformType::Pointer( transform ), rotationDegrees, false,
            outputPath );
        }

      if ( dimensionality == 3 )
        {
        // Transform
        typedef itk::AffineTransform<double, 3> TransformType;
        TransformType::Pointer transform = TransformType::New();
        transform->SetIdentity();
        double angleRad = itk::Math::pi * rotationDegrees / 180;
        //    transform->SetRotation( angleRad, angleRad, angleRad );
        TransformType::OutputVectorType axis1;
        axis1[0] = 1;
        axis1[1] = 0;
        axis1[2] = 0;
        TransformType::OutputVectorType axis2;
        axis2[0] = 0;
        axis2[1] = 1;
        axis2[2] = 0;
        transform->Rotate3D( axis1, angleRad );
        transform->Scale( 1.2 );
        transform->Shear( 0, 1, 0.05 );
        TransformType::ParametersType center( 3 );
        center.Fill( ( imageSize - 1 ) / 2.0 );
        transform->SetFixedParameters( center );

        typedef itk::Image<double, 3> ImageType;

        typedef itk::VanillaImageToImageMetricv4<ImageType, ImageType> MetricType;

        average = itkMetricImageGradientTestRunTest<3, MetricType::MovingTransformType>( imageSize,
            MetricType::MovingTransformType::Pointer( transform ), rotationDegrees, false,
            outputPath );
        }

      if ( average < minimumAverage )
        {
        minimumAverage = average;
        }
      std::cout << average << ", " << rotationDegrees << std::endl;
      }

    std::cout << "minimumAverage: " << minimumAverage << std::endl;
    double threshold = static_cast<double>( 0.96 );
    if ( minimumAverage < threshold )
      {
      std::cerr << "Minimum average of all runs is below threshold of " << threshold << std::endl;
      return EXIT_FAILURE;
      }

    }

  return EXIT_SUCCESS;
}