File: itkMultiGradientImageToImageMetricv4RegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (231 lines) | stat: -rw-r--r-- 9,666 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

/**
 * Test program for itkMultiStartImageToImageMetricv4RegistrationTest and
 * GradientDescentOptimizerv4 classes.
 *
 * Perform a registration using user-supplied images.
 * No numerical verification is performed. Test passes as long
 * as no exception occurs.
 */
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkMultiGradientOptimizerv4.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"

#include "itkCastImageFilter.h"

#include "itkCommand.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include <iomanip>

int itkMultiGradientImageToImageMetricv4RegistrationTest(int argc, char *argv[])
{

  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile ";
    std::cerr << " [numberOfIterations initialAffine ] ";
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << argc << std::endl;
  unsigned int numberOfIterations = 10;
  if( argc >= 5 )
    {
    numberOfIterations = atoi( argv[4] );
    }
  std::cout << " iterations "<< numberOfIterations << std::endl;

  const unsigned int Dimension = 2;
  typedef double PixelType; //I assume png is unsigned short

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );

  //get the images
  fixedImageReader->Update();
  FixedImageType::Pointer  fixedImage = fixedImageReader->GetOutput();
  movingImageReader->Update();
  MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

  /** define a resample filter that will ultimately be used to deform the image */
  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;
  ResampleFilterType::Pointer resample = ResampleFilterType::New();


  /** create a composite transform holder for other transforms  */
  typedef itk::CompositeTransform<double, Dimension>    CompositeType;

  CompositeType::Pointer compositeTransform = CompositeType::New();

  //create an affine transform
  typedef itk::AffineTransform<double, Dimension>
                                                    AffineTransformType;
  AffineTransformType::Pointer affineTransform = AffineTransformType::New();
  affineTransform->SetIdentity();
  std::cout <<" affineTransform params prior to optimization " << affineTransform->GetParameters() << std::endl;

  //identity transform for fixed image
  typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
  IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  // The metric
  typedef itk::MattesMutualInformationImageToImageMetricv4 < FixedImageType, MovingImageType >  MetricType;
  typedef itk::MeanSquaresImageToImageMetricv4 < FixedImageType, MovingImageType >  MetricType2;
  typedef MetricType::FixedSampledPointSetType                                                              PointSetType;
  MetricType::Pointer metric = MetricType::New();
  metric->SetNumberOfHistogramBins(20);
  MetricType2::Pointer metric2 = MetricType2::New();

  if( 0 )
    {
    std::cout << "Dense sampling." << std::endl;
    metric->SetUseFixedSampledPointSet( false );
    }
  else
    {
    typedef PointSetType::PointType     PointType;
    PointSetType::Pointer               pset(PointSetType::New());
    unsigned long ind=0,ct=0;
    itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
    for( It.GoToBegin(); !It.IsAtEnd(); ++It )
      {
      // take every N^th point
      if ( ct % 20 == 0  )
        {
          PointType pt;
          fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
          pset->SetPoint(ind, pt);
          ind++;
        }
        ct++;
      }
    metric->SetFixedSampledPointSet( pset );
    metric->SetUseFixedSampledPointSet( true );
    metric2->SetFixedSampledPointSet( pset );
    metric2->SetUseFixedSampledPointSet( true );
    std::cout << "Testing metric with point set..." << std::endl;
    }

  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetFixedTransform( identityTransform );
  metric->SetMovingTransform( affineTransform );
  metric->SetUseMovingImageGradientFilter( false );
  metric->SetUseFixedImageGradientFilter( false );
  metric->Initialize();

  metric2->SetFixedImage( fixedImage );
  metric2->SetMovingImage( movingImage );
  metric2->SetFixedTransform( identityTransform );
  metric2->SetMovingTransform( affineTransform );
  metric2->SetUseMovingImageGradientFilter( false );
  metric2->SetUseFixedImageGradientFilter( false );
  metric2->Initialize();

  std::cout << "First do an affine registration " << std::endl;
  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType > RegistrationParameterScalesFromShiftType;
  RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
  RegistrationParameterScalesFromShiftType::ScalesType scales(affineTransform->GetNumberOfParameters());
  shiftScaleEstimator->SetMetric(metric);
  shiftScaleEstimator->EstimateScales(scales);
  typedef itk::GradientDescentOptimizerv4  OptimizerType;
  OptimizerType::Pointer  optimizer = OptimizerType::New();
  optimizer->SetMetric( metric );
  optimizer->SetScales(scales);
  /** Set just 1 iteration for the sub-optimizer */
  optimizer->SetNumberOfIterations( 1 );
  optimizer->SetScalesEstimator( shiftScaleEstimator );
  optimizer->SetMaximumStepSizeInPhysicalUnits( 0.5 );

  std::cout << "now declare optimizer2  " << std::endl;

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricType2 > RegistrationParameterScalesFromShiftType2;
  RegistrationParameterScalesFromShiftType2::Pointer shiftScaleEstimator2 = RegistrationParameterScalesFromShiftType2::New();
  shiftScaleEstimator2->SetMetric(metric2);
  shiftScaleEstimator2->EstimateScales(scales);
  OptimizerType::Pointer  optimizer2 = OptimizerType::New();
  optimizer2->SetMetric( metric2 );
  optimizer2->SetScales(scales);
  /** Set just 1 iteration for the sub-optimizer */
  optimizer2->SetNumberOfIterations( 1 );
  optimizer2->SetScalesEstimator( shiftScaleEstimator2 );
  optimizer2->SetMaximumStepSizeInPhysicalUnits( 0.5 );

  std::cout << "now declare optimizer to combine the 2 sub-optimizers  " << std::endl;
  typedef  itk::MultiGradientOptimizerv4  MOptimizerType;
  MOptimizerType::Pointer  MOptimizer = MOptimizerType::New();
  MOptimizer->GetOptimizersList().push_back(optimizer);
  MOptimizer->GetOptimizersList().push_back(optimizer2);
  std::cout << "set the # of iterations " << std::endl;
  MOptimizer->SetNumberOfIterations( numberOfIterations );
  std::cout << "begin optimization " << std::endl;
  MOptimizer->StartOptimization();

  //warp the image with the displacement field
  resample->SetTransform( affineTransform );
  resample->SetInput( movingImageReader->GetOutput() );
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();
  std::cout << "GetNumberOfThreadsUsed: " << metric->GetNumberOfThreadsUsed() << std::endl;

  //write the warped image into a file
  typedef double                                    OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >  OutputImageType;
  typedef itk::CastImageFilter<
                        MovingImageType,
                        OutputImageType >           CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();
  writer->SetFileName( argv[3] );
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->Update();

  std::cout << "After optimization affine params are: " <<  affineTransform->GetParameters() << std::endl;
  std::cout << "Test PASSED." << std::endl;
  return EXIT_SUCCESS;

}