1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkTranslationTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkImage.h"
#include "itkGaussianImageSource.h"
#include "itkCyclicShiftImageFilter.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkObjectToObjectMultiMetricv4.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
/* This test performs a simple registration test using
* a single metric and a multivariate metric containing
* two copies of the metric, testing
* that the results are the same.
*/
template<typename TFilter>
class itkObjectToObjectMultiMetricv4RegistrationTestCommandIterationUpdate : public itk::Command
{
public:
typedef itkObjectToObjectMultiMetricv4RegistrationTestCommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
itkObjectToObjectMultiMetricv4RegistrationTestCommandIterationUpdate() {};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
if( typeid( event ) != typeid( itk::IterationEvent ) )
{
return;
}
const TFilter *optimizer = dynamic_cast< const TFilter * >( object );
if( !optimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
std::cout << "It- " << optimizer->GetCurrentIteration() << " gradient: " << optimizer->GetGradient() << " metric value: " << optimizer->GetCurrentMetricValue()
<< " Params: " << const_cast<TFilter*>(optimizer)->GetCurrentPosition() << std::endl;
}
};
template<typename TImage>
void ObjectToObjectMultiMetricv4RegistrationTestCreateImages( typename TImage::Pointer & fixedImage, typename TImage::Pointer & movingImage, typename TImage::OffsetType & imageShift )
{
typedef typename TImage::PixelType PixelType;
typedef PixelType CoordinateRepresentationType;
// Create two simple images
itk::SizeValueType ImageSize = 100;
itk::OffsetValueType boundary = 6;
// Declare Gaussian Sources
typedef itk::GaussianImageSource< TImage > GaussianImageSourceType;
typename TImage::SizeType size;
size.Fill( ImageSize );
typename TImage::SpacingType spacing;
spacing.Fill( itk::NumericTraits<CoordinateRepresentationType>::OneValue() );
typename TImage::PointType origin;
origin.Fill( itk::NumericTraits<CoordinateRepresentationType>::ZeroValue() );
typename TImage::DirectionType direction;
direction.Fill( itk::NumericTraits<CoordinateRepresentationType>::OneValue() );
typename GaussianImageSourceType::Pointer fixedImageSource = GaussianImageSourceType::New();
fixedImageSource->SetSize( size );
fixedImageSource->SetOrigin( origin );
fixedImageSource->SetSpacing( spacing );
fixedImageSource->SetNormalized( false );
fixedImageSource->SetScale( 1.0f );
fixedImageSource->Update();
fixedImage = fixedImageSource->GetOutput();
// zero-out the boundary
itk::ImageRegionIteratorWithIndex<TImage> it( fixedImage, fixedImage->GetLargestPossibleRegion() );
for( it.GoToBegin(); ! it.IsAtEnd(); ++it )
{
for( itk::SizeValueType n=0; n < TImage::ImageDimension; n++ )
{
if( it.GetIndex()[n] < boundary || (static_cast<itk::OffsetValueType>(size[n]) - it.GetIndex()[n]) <= boundary )
{
it.Set( itk::NumericTraits<PixelType>::ZeroValue() );
break;
}
}
}
// shift the fixed image to get the moving image
typedef itk::CyclicShiftImageFilter<TImage, TImage> CyclicShiftFilterType;
typename CyclicShiftFilterType::Pointer shiftFilter = CyclicShiftFilterType::New();
typename CyclicShiftFilterType::OffsetValueType maxImageShift = boundary-1;
imageShift.Fill( maxImageShift );
imageShift[0] = maxImageShift / 2;
shiftFilter->SetInput( fixedImage );
shiftFilter->SetShift( imageShift );
shiftFilter->Update();
movingImage = shiftFilter->GetOutput();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename TMetric>
int ObjectToObjectMultiMetricv4RegistrationTestRun( typename TMetric::Pointer & metric, int numberOfIterations,
typename TMetric::MeasureType & valueResult, typename TMetric::DerivativeType & derivativeResult,
typename TMetric::InternalComputationValueType maxStep, bool estimateStepOnce )
{
// calculate initial metric value
metric->Initialize();
typename TMetric::MeasureType initialValue = metric->GetValue();
// scales estimator
typedef itk::RegistrationParameterScalesFromPhysicalShift< TMetric > RegistrationParameterScalesFromShiftType;
typename RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
shiftScaleEstimator->SetMetric(metric);
//
// optimizer
//
typedef itk::GradientDescentOptimizerv4 OptimizerType;
typename OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
optimizer->SetMaximumStepSizeInPhysicalUnits( maxStep );
optimizer->SetDoEstimateLearningRateOnce( estimateStepOnce );
optimizer->SetDoEstimateLearningRateAtEachIteration( ! estimateStepOnce );
typedef itkObjectToObjectMultiMetricv4RegistrationTestCommandIterationUpdate<OptimizerType> CommandType;
typename CommandType::Pointer observer = CommandType::New();
//optimizer->AddObserver( itk::IterationEvent(), observer );
optimizer->StartOptimization();
std::cout << "# of iterations: " << optimizer->GetNumberOfIterations() << std::endl;
std::cout << "DoEstimateLearningRateOnce: " << optimizer->GetDoEstimateLearningRateOnce()
<< " GetDoEstimateLearningRateAtEachIteration: " << optimizer->GetDoEstimateLearningRateAtEachIteration() << std::endl;
derivativeResult = optimizer->GetCurrentPosition();
std::cout << "Transform final parameters: " << derivativeResult << " mag: " << derivativeResult.magnitude() << std::endl;
// final metric value
valueResult = metric->GetValue();
std::cout << "metric value: initial: " << initialValue << ", final: " << valueResult << std::endl;
// scales
std::cout << "scales: " << optimizer->GetScales() << std::endl;
std::cout << "optimizer learning rate at end: " << optimizer->GetLearningRate() << std::endl;
return EXIT_SUCCESS;
}
//////////////////////////////////////////////////////////////
int itkObjectToObjectMultiMetricv4RegistrationTest(int argc, char *argv[])
{
const int Dimension = 2;
typedef itk::Image< double, Dimension > ImageType;
int numberOfIterations = 30;
if( argc > 1 )
{
numberOfIterations = atoi( argv[1] );
}
// create an affine transform
typedef itk::TranslationTransform<double, Dimension> TranslationTransformType;
TranslationTransformType::Pointer translationTransform = TranslationTransformType::New();
translationTransform->SetIdentity();
// create images
ImageType::Pointer fixedImage = ITK_NULLPTR, movingImage = ITK_NULLPTR;
ImageType::OffsetType imageShift;
imageShift.Fill(0);
ObjectToObjectMultiMetricv4RegistrationTestCreateImages<ImageType>( fixedImage, movingImage, imageShift );
typedef itk::CorrelationImageToImageMetricv4<ImageType, ImageType> CorrelationMetricType;
CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
correlationMetric->SetFixedImage( fixedImage );
correlationMetric->SetMovingImage( movingImage );
correlationMetric->SetMovingTransform( translationTransform );
correlationMetric->Initialize();
translationTransform->SetIdentity();
std::cout << std::endl << "*** Single image metric: " << std::endl;
CorrelationMetricType::MeasureType singleValueResult = 0.0;
CorrelationMetricType::DerivativeType singleDerivativeResult;
singleDerivativeResult.Fill(0);
ObjectToObjectMultiMetricv4RegistrationTestRun<CorrelationMetricType>( correlationMetric, numberOfIterations, singleValueResult, singleDerivativeResult, 1.0, true );
std::cout << "*** multi-variate metric: " << std::endl;
CorrelationMetricType::Pointer metric2 = CorrelationMetricType::New();
metric2->SetFixedImage( fixedImage );
metric2->SetMovingImage( movingImage );
metric2->SetMovingTransform( translationTransform );
typedef itk::ObjectToObjectMultiMetricv4<Dimension,Dimension> MultiMetricType;
MultiMetricType::Pointer multiMetric = MultiMetricType::New();
multiMetric->AddMetric( correlationMetric );
multiMetric->AddMetric( metric2 );
multiMetric->AddMetric( metric2 );
multiMetric->Initialize();
translationTransform->SetIdentity();
CorrelationMetricType::MeasureType multiValueResult = 0.0;
CorrelationMetricType::DerivativeType multiDerivativeResult;
multiDerivativeResult.Fill(0);
ObjectToObjectMultiMetricv4RegistrationTestRun<MultiMetricType>( multiMetric, numberOfIterations, multiValueResult, multiDerivativeResult, 1.0, true );
// Comparison between single-metric and multi-variate metric registrations
CorrelationMetricType::DerivativeValueType tolerance = static_cast<CorrelationMetricType::DerivativeValueType>(1e-6);
if( std::fabs( multiDerivativeResult[0] - singleDerivativeResult[0] ) > tolerance ||
std::fabs( multiDerivativeResult[1] - singleDerivativeResult[1] ) > tolerance )
{
std::cerr << "multi-variate registration derivative: " << multiDerivativeResult
<< " are different from single-variate derivative: " << singleDerivativeResult << std::endl;
return EXIT_FAILURE;
}
if( std::fabs( multiValueResult - singleValueResult ) > tolerance )
{
std::cerr << "multi-variate registration value: " << multiValueResult
<< " is different from single-variate value: " << singleValueResult << std::endl;
return EXIT_FAILURE;
}
// compare results with truth
tolerance = static_cast<CorrelationMetricType::DerivativeValueType>(0.05);
if( std::fabs( multiDerivativeResult[0] - imageShift[0] ) / imageShift[0] > tolerance ||
std::fabs( multiDerivativeResult[1] - imageShift[1] ) / imageShift[1] > tolerance )
{
std::cerr << "multi-variate registration results: " << multiDerivativeResult << " are not as expected: " << imageShift << std::endl;
return EXIT_FAILURE;
}
//
// Try with step estimation at every iteration
// Comparison between single-metric and multi-variate metric registrations
//
std::cout << std::endl << "*** Single image metric 2: " << std::endl;
translationTransform->SetIdentity();
ObjectToObjectMultiMetricv4RegistrationTestRun<CorrelationMetricType>( correlationMetric, numberOfIterations, singleValueResult, singleDerivativeResult, 0.25, false );
std::cout << std::endl << "*** Multi-variate image metric 2: " << std::endl;
translationTransform->SetIdentity();
ObjectToObjectMultiMetricv4RegistrationTestRun<MultiMetricType>( multiMetric, numberOfIterations, multiValueResult, multiDerivativeResult, 0.25, false );
if( std::fabs( multiDerivativeResult[0] - singleDerivativeResult[0] ) > tolerance ||
std::fabs( multiDerivativeResult[1] - singleDerivativeResult[1] ) > tolerance )
{
std::cerr << "multi-variate registration derivative: " << multiDerivativeResult
<< " are different from single-variate derivative: " << singleDerivativeResult << std::endl;
return EXIT_FAILURE;
}
if( std::fabs( multiValueResult - singleValueResult ) > tolerance )
{
std::cerr << "multi-variate registration value: " << multiValueResult
<< " is different from single-variate value: " << singleValueResult << std::endl;
return EXIT_FAILURE;
}
// compare results with truth
tolerance = static_cast<CorrelationMetricType::DerivativeValueType>(0.05);
if( std::fabs( multiDerivativeResult[0] - imageShift[0] ) / imageShift[0] > tolerance ||
std::fabs( multiDerivativeResult[1] - imageShift[1] ) / imageShift[1] > tolerance )
{
std::cerr << "multi-variate registration results: " << multiDerivativeResult << " are not as expected: " << imageShift << std::endl;
return EXIT_FAILURE;
}
//
// Test with two different metric types
//
typedef itk::MeanSquaresImageToImageMetricv4<ImageType, ImageType> MeanSquaresMetricType;
MeanSquaresMetricType::Pointer meanSquaresMetric = MeanSquaresMetricType::New();
meanSquaresMetric->SetFixedImage( fixedImage );
meanSquaresMetric->SetMovingImage( movingImage );
meanSquaresMetric->SetMovingTransform( translationTransform );
MultiMetricType::Pointer multiMetric2 = MultiMetricType::New();
multiMetric2->AddMetric( correlationMetric );
multiMetric2->AddMetric( meanSquaresMetric );
multiMetric2->Initialize();
translationTransform->SetIdentity();
std::cout << "*** Multi-metric with different metric types: " << std::endl;
ObjectToObjectMultiMetricv4RegistrationTestRun<MultiMetricType>( multiMetric2, numberOfIterations, multiValueResult, multiDerivativeResult, 1.0, true );
// compare results with truth
tolerance = static_cast<MeanSquaresMetricType::DerivativeValueType>(0.05);
if( std::fabs( multiDerivativeResult[0] - imageShift[0] ) / imageShift[0] > tolerance ||
std::fabs( multiDerivativeResult[1] - imageShift[1] ) / imageShift[1] > tolerance )
{
std::cerr << "multi-variate registration results: " << multiDerivativeResult << " are not as expected: " << imageShift << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|