File: itkBSplineExponentialImageRegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (420 lines) | stat: -rw-r--r-- 18,910 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkImageRegistrationMethodv4.h"

#include "itkAffineTransform.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkBSplineExponentialDiffeomorphicTransform.h"
#include "itkBSplineExponentialDiffeomorphicTransformParametersAdaptor.h"
#include "itkComposeDisplacementFieldsImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"
#include "itkStatisticsImageFilter.h"

template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
  typedef CommandIterationUpdate   Self;
  typedef itk::Command             Superclass;
  typedef itk::SmartPointer<Self>  Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdate() {};

public:

  virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *) caller, event);
    }

  virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    const TFilter * filter = static_cast< const TFilter * >( object );
    if( typeid( event ) != typeid( itk::IterationEvent ) )
      {
      return;
      }

    unsigned int currentLevel = filter->GetCurrentLevel();
    typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension( currentLevel );
    typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
    typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();

    const itk::ObjectToObjectOptimizerBase * optimizerBase = filter->GetOptimizer();
    typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
    typename GradientDescentOptimizerv4Type::ConstPointer optimizer =
      dynamic_cast<const GradientDescentOptimizerv4Type *>(optimizerBase);
    if( !optimizer )
      {
      itkGenericExceptionMacro( "Error dynamic_cast failed" );
      }
    typename GradientDescentOptimizerv4Type::DerivativeType gradient = optimizer->GetGradient();

    /* orig
    std::cout << "  Current level = " << currentLevel << std::endl;
    std::cout << "    shrink factor = " << shrinkFactors[currentLevel] << std::endl;
    std::cout << "    smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
    std::cout << "    required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
    */

    //debug:
    std::cout << "  CL Current level:           " << currentLevel << std::endl;
    std::cout << "   SF Shrink factor:          " << shrinkFactors << std::endl;
    std::cout << "   SS Smoothing sigma:        " << smoothingSigmas[currentLevel] << std::endl;
    std::cout << "   RFP Required fixed params: " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
    std::cout << "   LR Final learning rate:    " << optimizer->GetLearningRate() << std::endl;
    std::cout << "   FM Final metric value:     " << optimizer->GetCurrentMetricValue() << std::endl;
    std::cout << "   SC Optimizer scales:       " << optimizer->GetScales() << std::endl;
    std::cout << "   FG Final metric gradient (sample of values): ";
    if( gradient.GetSize() < 10 )
      {
      std::cout << gradient;
      }
    else
      {
      for( itk::SizeValueType i = 0; i < gradient.GetSize(); i += (gradient.GetSize() / 16) )
        {
        std::cout << gradient[i] << " ";
        }
      }
    std::cout << std::endl;
    }
};

template <unsigned int VImageDimension>
int PerformBSplineExpImageRegistration( int argc, char *argv[] )
{
  if( argc < 6 )
    {
    std::cout << argv[0] << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl;
    exit( 1 );
    }

  typedef double                                 PixelType;
  typedef itk::Image<PixelType, VImageDimension> FixedImageType;
  typedef itk::Image<PixelType, VImageDimension> MovingImageType;

  typedef itk::ImageFileReader<FixedImageType> ImageReaderType;

  typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
  fixedImageReader->SetFileName( argv[2] );
  fixedImageReader->Update();
  typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
  fixedImage->Update();
  fixedImage->DisconnectPipeline();

  typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
  movingImageReader->SetFileName( argv[3] );
  movingImageReader->Update();
  typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
  movingImage->Update();
  movingImage->DisconnectPipeline();

  typedef itk::AffineTransform<double, VImageDimension> AffineTransformType;
  typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType, AffineTransformType> AffineRegistrationType;
  typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
  typename AffineRegistrationType::Pointer affineSimple = AffineRegistrationType::New();
  affineSimple->SetFixedImage( fixedImage );
  affineSimple->SetMovingImage( movingImage );

  // Smooth by specified gaussian sigmas for each level.  These values are specified in
  // physical units. Sigmas of zero cause inconsistency between some platforms.
  {
  typename AffineRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize( 3 );
  smoothingSigmasPerLevel[0] = 2;
  smoothingSigmasPerLevel[1] = 1;
  smoothingSigmasPerLevel[2] = 1; //0;
  affineSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
  }

  typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
  typename GradientDescentOptimizerv4Type::Pointer affineOptimizer =
    dynamic_cast<GradientDescentOptimizerv4Type * >( affineSimple->GetModifiableOptimizer() );
  if( !affineOptimizer )
    {
    itkGenericExceptionMacro( "Error dynamic_cast failed" );
    }
#ifdef NDEBUG
  affineOptimizer->SetNumberOfIterations( atoi( argv[5] ) );
#else
  affineOptimizer->SetNumberOfIterations( 1 );
#endif

  affineOptimizer->SetDoEstimateLearningRateOnce( false ); //true by default
  affineOptimizer->SetDoEstimateLearningRateAtEachIteration( true );

  typedef CommandIterationUpdate<AffineRegistrationType> AffineCommandType;
  typename AffineCommandType::Pointer affineObserver = AffineCommandType::New();
  affineSimple->AddObserver( itk::IterationEvent(), affineObserver );

  {
  typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType> ImageMetricType;
  typename ImageMetricType::Pointer imageMetric = dynamic_cast<ImageMetricType*>( affineSimple->GetModifiableMetric() );
  if(imageMetric.IsNull())
    {
    std::cout << "Test failed - too many pixels different." << std::endl;
    return EXIT_FAILURE;
    }
  imageMetric->SetFloatingPointCorrectionResolution(1e4);
  }

  try
    {
    std::cout << "Affine txf:" << std::endl;
    affineSimple->Update();
    }
  catch( itk::ExceptionObject &e )
    {
    std::cerr << "Exception caught: " << e << std::endl;
    return EXIT_FAILURE;
    }

  {
  typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType> ImageMetricType;
  typename ImageMetricType::Pointer imageMetric = dynamic_cast<ImageMetricType*>( affineOptimizer->GetModifiableMetric() );
  std::cout << "Affine parameters after registration: " << std::endl
            << affineOptimizer->GetCurrentPosition() << std::endl
            << "Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl
            << "Use FltPtCorrex: " << imageMetric->GetUseFloatingPointCorrection() << std::endl
            << "FltPtCorrexRes: " << imageMetric->GetFloatingPointCorrectionResolution() << std::endl
            << "Number of threads used: metric: " << imageMetric->GetNumberOfThreadsUsed()
            << std::endl << " optimizer: " << affineOptimizer->GetNumberOfThreads() << std::endl;
  }
  //
  // Now do the displacement field transform with gaussian smoothing using
  // the composite transform.
  //

  typedef typename AffineRegistrationType::RealType RealType;

  typedef itk::CompositeTransform<RealType, VImageDimension> CompositeTransformType;
  typename CompositeTransformType::Pointer compositeTransform = CompositeTransformType::New();
  compositeTransform->AddTransform( affineSimple->GetModifiableTransform() );

  typedef itk::Vector<RealType, VImageDimension> VectorType;
  VectorType zeroVector( 0.0 );
  typedef itk::Image<VectorType, VImageDimension> DisplacementFieldType;
  typename DisplacementFieldType::Pointer displacementField = DisplacementFieldType::New();
  displacementField->CopyInformation( fixedImage );
  displacementField->SetRegions( fixedImage->GetBufferedRegion() );
  displacementField->Allocate();
  displacementField->FillBuffer( zeroVector );

  typedef itk::BSplineExponentialDiffeomorphicTransform<RealType, VImageDimension> DisplacementFieldTransformType;

  typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType, DisplacementFieldTransformType> DisplacementFieldRegistrationType;
  typename DisplacementFieldRegistrationType::Pointer displacementFieldSimple = DisplacementFieldRegistrationType::New();

  typename DisplacementFieldTransformType::Pointer fieldTransform = DisplacementFieldTransformType::New();

  typename DisplacementFieldTransformType::ArrayType updateControlPoints;
  updateControlPoints.Fill( 10 );

  typename DisplacementFieldTransformType::ArrayType velocityControlPoints;
  velocityControlPoints.Fill( 10 );

  fieldTransform->SetNumberOfControlPointsForTheUpdateField( updateControlPoints );
  fieldTransform->SetNumberOfControlPointsForTheConstantVelocityField( velocityControlPoints );
  fieldTransform->SetConstantVelocityField( displacementField );
  fieldTransform->SetCalculateNumberOfIntegrationStepsAutomatically( true );

  displacementFieldSimple->SetInitialTransform( fieldTransform );
  displacementFieldSimple->InPlaceOn();

  typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, MovingImageType> CorrelationMetricType;
  typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
  typename CorrelationMetricType::RadiusType radius;
  radius.Fill( 4 );
  correlationMetric->SetRadius( radius );
  correlationMetric->SetUseMovingImageGradientFilter( false );
  correlationMetric->SetUseFixedImageGradientFilter( false );

  //correlationMetric->SetUseFloatingPointCorrection(true);
  //correlationMetric->SetFloatingPointCorrectionResolution(1e4);

  typedef itk::RegistrationParameterScalesFromPhysicalShift<CorrelationMetricType> ScalesEstimatorType;
  typename ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
  scalesEstimator->SetMetric( correlationMetric );
  scalesEstimator->SetTransformForward( true );
  scalesEstimator->SetSmallParameterVariation( 1.0 );

  typename GradientDescentOptimizerv4Type::Pointer optimizer = GradientDescentOptimizerv4Type::New();
  optimizer->SetLearningRate( 1.0 );
#ifdef NDEBUG
  optimizer->SetNumberOfIterations( atoi( argv[6] ) );
#else
  optimizer->SetNumberOfIterations( 1 );
#endif
  optimizer->SetScalesEstimator( ITK_NULLPTR );
  optimizer->SetDoEstimateLearningRateOnce( false ); //true by default
  optimizer->SetDoEstimateLearningRateAtEachIteration( true );

  displacementFieldSimple->SetFixedImage( fixedImage );
  displacementFieldSimple->SetMovingImage( movingImage );
  displacementFieldSimple->SetNumberOfLevels( 3 );
  displacementFieldSimple->SetMovingInitialTransform( compositeTransform );
  displacementFieldSimple->SetMetric( correlationMetric );
  displacementFieldSimple->SetOptimizer( optimizer );

  // Shrink the virtual domain by specified factors for each level.  See documentation
  // for the itkShrinkImageFilter for more detailed behavior.
  typename DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
  shrinkFactorsPerLevel.SetSize( 3 );
  shrinkFactorsPerLevel[0] = 3;
  shrinkFactorsPerLevel[1] = 2;
  shrinkFactorsPerLevel[2] = 1;
  displacementFieldSimple->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );

  // Smooth by specified gaussian sigmas for each level.  These values are specified in
  // physical units.
  typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize( 3 );
  smoothingSigmasPerLevel[0] = 2;
  smoothingSigmasPerLevel[1] = 1;
  smoothingSigmasPerLevel[2] = 1;
  displacementFieldSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );

  typedef itk::BSplineExponentialDiffeomorphicTransformParametersAdaptor<DisplacementFieldTransformType> DisplacementFieldTransformAdaptorType;

  typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;

  for( unsigned int level = 0; level < shrinkFactorsPerLevel.Size(); level++ )
    {
    // We use the shrink image filter to calculate the fixed parameters of the virtual
    // domain at each level.  To speed up calculation and avoid unnecessary memory
    // usage, we could calculate these fixed parameters directly.

    typedef itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType> ShrinkFilterType;
    typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
    shrinkFilter->SetShrinkFactors( shrinkFactorsPerLevel[level] );
    shrinkFilter->SetInput( displacementField );
    shrinkFilter->Update();

    typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New();
    fieldTransformAdaptor->SetRequiredSpacing( shrinkFilter->GetOutput()->GetSpacing() );
    fieldTransformAdaptor->SetRequiredSize( shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() );
    fieldTransformAdaptor->SetRequiredDirection( shrinkFilter->GetOutput()->GetDirection() );
    fieldTransformAdaptor->SetRequiredOrigin( shrinkFilter->GetOutput()->GetOrigin() );

    adaptors.push_back( fieldTransformAdaptor.GetPointer() );
    }
  displacementFieldSimple->SetTransformParametersAdaptorsPerLevel( adaptors );

  typedef CommandIterationUpdate<DisplacementFieldRegistrationType> DisplacementFieldRegistrationCommandType;
  typename DisplacementFieldRegistrationCommandType::Pointer displacementFieldObserver = DisplacementFieldRegistrationCommandType::New();
  displacementFieldSimple->AddObserver( itk::IterationEvent(), displacementFieldObserver );

  try
    {
    std::cout << "Displ. txf - bspline update" << std::endl;
    displacementFieldSimple->Update();
    }
  catch( itk::ExceptionObject &e )
    {
    std::cerr << "Exception caught: " << e << std::endl;
    return EXIT_FAILURE;
    }

  compositeTransform->AddTransform( displacementFieldSimple->GetModifiableTransform() );

  std::cout << "After displacement registration: " << std::endl
            << "Last LearningRate: " << optimizer->GetLearningRate() << std::endl
            << "Use FltPtCorrex: " << correlationMetric->GetUseFloatingPointCorrection() << std::endl
            << "FltPtCorrexRes: " << correlationMetric->GetFloatingPointCorrectionResolution() << std::endl
            << "Number of threads used: metric: " << correlationMetric->GetNumberOfThreadsUsed()
            << "Number of threads used: metric: " << correlationMetric->GetNumberOfThreadsUsed()
            << " optimizer: " << displacementFieldSimple->GetOptimizer()->GetNumberOfThreads() << std::endl;

  typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> ResampleFilterType;
  typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
  resampler->SetTransform( compositeTransform );
  resampler->SetInput( movingImage );
  resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
  resampler->SetOutputOrigin(  fixedImage->GetOrigin() );
  resampler->SetOutputSpacing( fixedImage->GetSpacing() );
  resampler->SetOutputDirection( fixedImage->GetDirection() );
  resampler->SetDefaultPixelValue( 0 );
  resampler->Update();

  typedef itk::ImageFileWriter<FixedImageType> WriterType;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( argv[4] );
  writer->SetInput( resampler->GetOutput() );
  writer->Update();

  // Check identity of forward and inverse transforms

  typedef itk::ComposeDisplacementFieldsImageFilter<DisplacementFieldType, DisplacementFieldType> ComposerType;
  typename ComposerType::Pointer composer = ComposerType::New();
  composer->SetDisplacementField( fieldTransform->GetDisplacementField() );
  composer->SetWarpingField( fieldTransform->GetInverseDisplacementField() );
  composer->Update();

  typedef itk::VectorMagnitudeImageFilter<DisplacementFieldType, MovingImageType> MagnituderType;
  typename MagnituderType::Pointer magnituder = MagnituderType::New();
  magnituder->SetInput( composer->GetOutput() );
  magnituder->Update();

  typedef itk::StatisticsImageFilter<MovingImageType> StatisticsImageFilterType;
  typename StatisticsImageFilterType::Pointer stats = StatisticsImageFilterType::New();
  stats->SetInput( magnituder->GetOutput() );
  stats->Update();

  std::cout << "Identity check:" << std::endl;
  std::cout << "  Min:  " << stats->GetMinimum() << std::endl;
  std::cout << "  Max:  " << stats->GetMaximum() << std::endl;
  std::cout << "  Mean:  " << stats->GetMean() << std::endl;
  std::cout << "  Variance:  " << stats->GetVariance() << std::endl;

  if( stats->GetMean() > 0.1 )
    {
    std::cerr << "Identity test failed." << std::endl;
    }

  return EXIT_SUCCESS;
}

int itkBSplineExponentialImageRegistrationTest( int argc, char *argv[] )
{
  if( argc < 6 )
    {
    std::cout << argv[0] << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl;
    exit( 1 );
    }

  switch( atoi( argv[1] ) )
   {
   case 2:
     PerformBSplineExpImageRegistration<2>( argc, argv );
     break;
   case 3:
     PerformBSplineExpImageRegistration<3>( argc, argv );
     break;
   default:
      std::cerr << "Unsupported dimension" << std::endl;
      exit( EXIT_FAILURE );
   }
  return EXIT_SUCCESS;
}