File: itkBSplineSyNImageRegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (383 lines) | stat: -rw-r--r-- 17,144 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkImageRegistrationMethodv4.h"
#include "itkBSplineSyNImageRegistrationMethod.h"

#include "itkAffineTransform.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkCompositeTransform.h"
#include "itkVector.h"
#include "itkTestingMacros.h"

template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
  typedef CommandIterationUpdate   Self;
  typedef itk::Command             Superclass;
  typedef itk::SmartPointer<Self>  Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdate() {};

public:

  virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *) caller, event);
    }

  virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    const TFilter * filter =
      dynamic_cast< const TFilter * >( object );
    if( typeid( event ) != typeid( itk::IterationEvent ) )
      { return; }

    unsigned int currentLevel = filter->GetCurrentLevel();
    typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension( currentLevel );
    typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
    typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();

    std::cout << "  Current level = " << currentLevel << std::endl;
    std::cout << "    shrink factor = " << shrinkFactors << std::endl;
    std::cout << "    smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
    std::cout << "    required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
    }
};

template<unsigned int TDimension>
int PerformBSplineSyNImageRegistration( int itkNotUsed( argc ), char *argv[] )
{
  const unsigned int ImageDimension = TDimension;

  typedef double                                PixelType;
  typedef itk::Image<PixelType, ImageDimension> FixedImageType;
  typedef itk::Image<PixelType, ImageDimension> MovingImageType;

  typedef itk::ImageFileReader<FixedImageType> ImageReaderType;

  typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
  fixedImageReader->SetFileName( argv[2] );
  fixedImageReader->Update();
  typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
  fixedImage->Update();
  fixedImage->DisconnectPipeline();

  typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
  movingImageReader->SetFileName( argv[3] );
  movingImageReader->Update();
  typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
  movingImage->Update();
  movingImage->DisconnectPipeline();

  typedef itk::AffineTransform<double, ImageDimension> AffineTransformType;
  typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType, AffineTransformType> AffineRegistrationType;
  typename AffineRegistrationType::Pointer affineSimple = AffineRegistrationType::New();
  affineSimple->SetFixedImage( fixedImage );
  affineSimple->SetMovingImage( movingImage );

  // Shrink the virtual domain by specified factors for each level.  See documentation
  // for the itkShrinkImageFilter for more detailed behavior.
  typename AffineRegistrationType::ShrinkFactorsArrayType affineShrinkFactorsPerLevel;
  affineShrinkFactorsPerLevel.SetSize( 3 );
  affineShrinkFactorsPerLevel[0] = 4;
  affineShrinkFactorsPerLevel[1] = 4;
  affineShrinkFactorsPerLevel[2] = 4;
  affineSimple->SetShrinkFactorsPerLevel( affineShrinkFactorsPerLevel );

  // Set the number of iterations
  typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
  GradientDescentOptimizerv4Type * optimizer = dynamic_cast<GradientDescentOptimizerv4Type *>( affineSimple->GetModifiableOptimizer() );
  TEST_EXPECT_TRUE( optimizer != ITK_NULLPTR );
#ifdef NDEBUG
  optimizer->SetNumberOfIterations( 100 );
#else
  optimizer->SetNumberOfIterations( 1 );
#endif

  typedef CommandIterationUpdate<AffineRegistrationType> AffineCommandType;
  typename AffineCommandType::Pointer affineObserver = AffineCommandType::New();
  affineSimple->AddObserver( itk::IterationEvent(), affineObserver );

  try
    {
    std::cout << "Affine transform" << std::endl;
    affineSimple->Update();
    }
  catch( itk::ExceptionObject &e )
    {
    std::cerr << "Exception caught: " << e << std::endl;
    return EXIT_FAILURE;
    }

  //
  // Now do the b-spline syn displacement field transform
  //

  typedef typename AffineRegistrationType::RealType RealType;

  typedef itk::CompositeTransform<RealType, ImageDimension> CompositeTransformType;
  typename CompositeTransformType::Pointer compositeTransform = CompositeTransformType::New();
  compositeTransform->AddTransform( affineSimple->GetModifiableTransform() );

  typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> AffineResampleFilterType;
  typename AffineResampleFilterType::Pointer affineResampler = AffineResampleFilterType::New();
  affineResampler->SetTransform( compositeTransform );
  affineResampler->SetInput( movingImage );
  affineResampler->SetSize( fixedImage->GetBufferedRegion().GetSize() );
  affineResampler->SetOutputOrigin(  fixedImage->GetOrigin() );
  affineResampler->SetOutputSpacing( fixedImage->GetSpacing() );
  affineResampler->SetOutputDirection( fixedImage->GetDirection() );
  affineResampler->SetDefaultPixelValue( 0 );
  affineResampler->Update();

  std::string affineMovingImageFileName = std::string( argv[4] ) + std::string( "MovingImageAfterAffineTransform.nii.gz" );

  typedef itk::ImageFileWriter<FixedImageType> AffineWriterType;
  typename AffineWriterType::Pointer affineWriter = AffineWriterType::New();
  affineWriter->SetFileName( affineMovingImageFileName.c_str() );
  affineWriter->SetInput( affineResampler->GetOutput() );
  affineWriter->Update();

  typedef itk::Vector<RealType, ImageDimension> VectorType;
  VectorType zeroVector( 0.0 );

  // Create the SyN deformable registration method

  typedef itk::Image<VectorType, ImageDimension> DisplacementFieldType;
  typename DisplacementFieldType::Pointer displacementField = DisplacementFieldType::New();
  displacementField->CopyInformation( fixedImage );
  displacementField->SetRegions( fixedImage->GetBufferedRegion() );
  displacementField->Allocate();
  displacementField->FillBuffer( zeroVector );

  typename DisplacementFieldType::Pointer inverseDisplacementField = DisplacementFieldType::New();
  inverseDisplacementField->CopyInformation( fixedImage );
  inverseDisplacementField->SetRegions( fixedImage->GetBufferedRegion() );
  inverseDisplacementField->Allocate();
  inverseDisplacementField->FillBuffer( zeroVector );

  typedef itk::BSplineSyNImageRegistrationMethod<FixedImageType, MovingImageType> DisplacementFieldRegistrationType;
  typename DisplacementFieldRegistrationType::Pointer displacementFieldRegistration = DisplacementFieldRegistrationType::New();

  typename DisplacementFieldRegistrationType::OptimizerWeightsType optimizerWeights;
  optimizerWeights.SetSize( TDimension );
  optimizerWeights.Fill( 0.995 );

  displacementFieldRegistration->SetOptimizerWeights( optimizerWeights );

  typedef typename DisplacementFieldRegistrationType::OutputTransformType OutputTransformType;
  typename OutputTransformType::Pointer outputTransform = OutputTransformType::New();
  outputTransform->SetDisplacementField( displacementField );
  outputTransform->SetInverseDisplacementField( inverseDisplacementField );

  // Create the transform adaptors

  typedef itk::BSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<OutputTransformType> DisplacementFieldTransformAdaptorType;
  typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;

  // Create the transform adaptors
  // For the gaussian displacement field, the specified variances are in image spacing terms
  // and, in normal practice, we typically don't change these values at each level.  However,
  // if the user wishes to add that option, they can use the class
  // GaussianSmoothingOnUpdateDisplacementFieldTransformAdaptor

  unsigned int numberOfLevels = 3;

  typename DisplacementFieldRegistrationType::NumberOfIterationsArrayType numberOfIterationsPerLevel;
  numberOfIterationsPerLevel.SetSize( 3 );
#ifdef NDEBUG
  numberOfIterationsPerLevel[0] = atoi( argv[5] );
  numberOfIterationsPerLevel[1] = 2;
  numberOfIterationsPerLevel[2] = 1;
#else
  numberOfIterationsPerLevel[0] = 1;
  numberOfIterationsPerLevel[1] = 1;
  numberOfIterationsPerLevel[2] = 1;
#endif
  typename DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
  shrinkFactorsPerLevel.SetSize( 3 );
  shrinkFactorsPerLevel[0] = 3;
  shrinkFactorsPerLevel[1] = 2;
  shrinkFactorsPerLevel[2] = 1;

  typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize( 3 );
  smoothingSigmasPerLevel[0] = 2;
  smoothingSigmasPerLevel[1] = 1;
  smoothingSigmasPerLevel[2] = 0;

  typename OutputTransformType::ArrayType updateMeshSize;
  typename OutputTransformType::ArrayType totalMeshSize;
  for( unsigned int d = 0; d < ImageDimension; d++ )
    {
    updateMeshSize[d] = 10;
    totalMeshSize[d] = 0;
    }

  for( unsigned int level = 0; level < numberOfLevels; level++ )
    {
    // We use the shrink image filter to calculate the fixed parameters of the virtual
    // domain at each level.  To speed up calculation and avoid unnecessary memory
    // usage, we could calculate these fixed parameters directly.

    typedef itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType> ShrinkFilterType;
    typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
    shrinkFilter->SetShrinkFactors( shrinkFactorsPerLevel[level] );
    shrinkFilter->SetInput( displacementField );
    shrinkFilter->Update();

    typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New();
    fieldTransformAdaptor->SetRequiredSpacing( shrinkFilter->GetOutput()->GetSpacing() );
    fieldTransformAdaptor->SetRequiredSize( shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() );
    fieldTransformAdaptor->SetRequiredDirection( shrinkFilter->GetOutput()->GetDirection() );
    fieldTransformAdaptor->SetRequiredOrigin( shrinkFilter->GetOutput()->GetOrigin() );
    fieldTransformAdaptor->SetTransform( outputTransform );

    // A good heuristic is to double the b-spline mesh resolution at each level
    typename OutputTransformType::ArrayType newUpdateMeshSize = updateMeshSize;
    typename OutputTransformType::ArrayType newTotalMeshSize = totalMeshSize;
    for( unsigned int d = 0; d < ImageDimension; d++ )
      {
      newUpdateMeshSize[d] = newUpdateMeshSize[d] << ( level );
      newTotalMeshSize[d] = newTotalMeshSize[d] << ( level );
      }
    fieldTransformAdaptor->SetMeshSizeForTheUpdateField( newUpdateMeshSize );
    fieldTransformAdaptor->SetMeshSizeForTheTotalField( newTotalMeshSize );

    adaptors.push_back( fieldTransformAdaptor.GetPointer() );
    }

  typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, MovingImageType> CorrelationMetricType;
  typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
  typename CorrelationMetricType::RadiusType radius;
  radius.Fill( 4 );
  correlationMetric->SetRadius( radius );
  correlationMetric->SetUseMovingImageGradientFilter( false );
  correlationMetric->SetUseFixedImageGradientFilter( false );

  displacementFieldRegistration->SetFixedImage( fixedImage );
  displacementFieldRegistration->SetMovingImage( movingImage );
  displacementFieldRegistration->SetNumberOfLevels( 3 );
  displacementFieldRegistration->SetMovingInitialTransform( compositeTransform );
  displacementFieldRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
  displacementFieldRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
  displacementFieldRegistration->SetMetric( correlationMetric );
  displacementFieldRegistration->SetLearningRate( atof( argv[6] ) );
  displacementFieldRegistration->SetNumberOfIterationsPerLevel( numberOfIterationsPerLevel );
  displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel( adaptors );

  std::cout << displacementFieldRegistration->GetOptimizerWeights() << std::endl;

  outputTransform->SetDisplacementField( displacementField );
  outputTransform->SetInverseDisplacementField( inverseDisplacementField );
  displacementFieldRegistration->SetInitialTransform( outputTransform );
  displacementFieldRegistration->InPlaceOn();

  try
    {
    std::cout << "BSpline SyN registration" << std::endl;
    displacementFieldRegistration->Update();
    }
  catch( itk::ExceptionObject &e )
    {
    std::cerr << "Exception caught: " << e << std::endl;
    return EXIT_FAILURE;
    }

  compositeTransform->AddTransform( outputTransform );

  typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> ResampleFilterType;
  typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
  resampler->SetTransform( compositeTransform );
  resampler->SetInput( movingImage );
  resampler->SetSize( fixedImage->GetBufferedRegion().GetSize() );
  resampler->SetOutputOrigin( fixedImage->GetOrigin() );
  resampler->SetOutputSpacing( fixedImage->GetSpacing() );
  resampler->SetOutputDirection( fixedImage->GetDirection() );
  resampler->SetDefaultPixelValue( 0 );
  resampler->Update();

  std::string warpedMovingImageFileName = std::string( argv[4] ) + std::string( "MovingImageAfterSyN.nii.gz" );

  typedef itk::ImageFileWriter<FixedImageType> WriterType;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( warpedMovingImageFileName.c_str() );
  writer->SetInput( resampler->GetOutput() );
  writer->Update();

  typedef itk::ResampleImageFilter<FixedImageType, MovingImageType> InverseResampleFilterType;
  typename InverseResampleFilterType::Pointer inverseResampler = ResampleFilterType::New();
  inverseResampler->SetTransform( compositeTransform->GetInverseTransform() );
  inverseResampler->SetInput( fixedImage );
  inverseResampler->SetSize( movingImage->GetBufferedRegion().GetSize() );
  inverseResampler->SetOutputOrigin( movingImage->GetOrigin() );
  inverseResampler->SetOutputSpacing( movingImage->GetSpacing() );
  inverseResampler->SetOutputDirection( movingImage->GetDirection() );
  inverseResampler->SetDefaultPixelValue( 0 );
  inverseResampler->Update();

  std::string inverseWarpedFixedImageFileName = std::string( argv[4] ) + std::string( "InverseWarpedFixedImage.nii.gz" );

  typedef itk::ImageFileWriter<MovingImageType> InverseWriterType;
  typename InverseWriterType::Pointer inverseWriter = InverseWriterType::New();
  inverseWriter->SetFileName( inverseWarpedFixedImageFileName.c_str() );
  inverseWriter->SetInput( inverseResampler->GetOutput() );
  inverseWriter->Update();

  std::string displacementFieldFileName = std::string( argv[4] ) + std::string( "DisplacementField.nii.gz" );

  typedef itk::ImageFileWriter<DisplacementFieldType> DisplacementFieldWriterType;
  typename DisplacementFieldWriterType::Pointer displacementFieldWriter = DisplacementFieldWriterType::New();
  displacementFieldWriter->SetFileName( displacementFieldFileName.c_str() );
  displacementFieldWriter->SetInput( outputTransform->GetDisplacementField() );
  displacementFieldWriter->Update();

  return EXIT_SUCCESS;
}

int itkBSplineSyNImageRegistrationTest( int argc, char *argv[] )
{
  if ( argc < 5 )
    {
    std::cout << argv[0] << " imageDimension fixedImage movingImage outputPrefix numberOfDeformableIterations learningRate" << std::endl;
    exit( 1 );
    }

  switch( atoi( argv[1] ) )
   {
   case 2:
     PerformBSplineSyNImageRegistration<2>( argc, argv );
     break;
   case 3:
     PerformBSplineSyNImageRegistration<3>( argc, argv );
     break;
   default:
      std::cerr << "Unsupported dimension" << std::endl;
      exit( EXIT_FAILURE );
   }
  return EXIT_SUCCESS;
}