File: itkQuasiNewtonOptimizerv4RegistrationTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (361 lines) | stat: -rw-r--r-- 15,174 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*=========================================================================
*
*  Copyright Insight Software Consortium
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*         http://www.apache.org/licenses/LICENSE-2.0.txt
*
*  Unless required by applicable law or agreed to in writing, software
*  distributed under the License is distributed on an "AS IS" BASIS,
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*  See the License for the specific language governing permissions and
*  limitations under the License.
*
*=========================================================================*/

/**
 * Test program for image registration with multiple metric types and
 * QuasiNewtonOptimizerv4 classes.
 *
 * Perform a registration using user-supplied images.
 * No numerical verification is performed. Test passes as long
 * as no exception occurs.
 */
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkQuasiNewtonOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"

#include "itkIdentityTransform.h"
#include "itkTranslationTransform.h"
#include "itkAffineTransform.h"
#include "itkEuler2DTransform.h"
#include "itkEuler3DTransform.h"
#include "itkCompositeTransform.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkRegistrationParameterScalesFromJacobian.h"

#include "itkCastImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCommand.h"
#include "itksys/SystemTools.hxx"
#include "itkResampleImageFilter.h"

template<unsigned int Dimension, typename TAffineTransform>
int itkQuasiNewtonOptimizerv4RegistrationTestMain(int argc, char *argv[])
{
  std::string metricString = argv[2];
  unsigned int numberOfIterations = 10;
  unsigned int numberOfDisplacementIterations = 10;

  if( argc >= 7 )
    {
    numberOfIterations = atoi( argv[6] );
    }
  if( argc >= 8 )
    {
    numberOfDisplacementIterations = atoi( argv[7] );
    }
  std::cout << " iterations "<< numberOfIterations
    << " displacementIterations " << numberOfDisplacementIterations << std::endl;

  typedef double PixelType; //I assume png is unsigned short

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  typename FixedImageReaderType::Pointer fixedImageReader   = FixedImageReaderType::New();
  typename MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[3] );
  movingImageReader->SetFileName( argv[4] );

  //get the images
  fixedImageReader->Update();
  typename FixedImageType::Pointer  fixedImage = fixedImageReader->GetOutput();
  movingImageReader->Update();
  typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

  /** define a resample filter that will ultimately be used to deform the image */
  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;
  typename ResampleFilterType::Pointer resample = ResampleFilterType::New();


  /** create a composite transform holder for other transforms  */
  typedef itk::CompositeTransform<double, Dimension>    CompositeType;

  typename CompositeType::Pointer compositeTransform = CompositeType::New();

  //create an affine transform
  typedef TAffineTransform                              AffineTransformType;

  typename AffineTransformType::Pointer affineTransform = AffineTransformType::New();
  affineTransform->SetIdentity();
  std::cout <<" affineTransform params " << affineTransform->GetParameters() << std::endl;
  typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform<
                                                    double, Dimension>
                                                     DisplacementTransformType;
  typename DisplacementTransformType::Pointer displacementTransform =
                                              DisplacementTransformType::New();
  typedef typename DisplacementTransformType::DisplacementFieldType
                                                         DisplacementFieldType;
  typename DisplacementFieldType::Pointer field = DisplacementFieldType::New();

  //set the field to be the same as the fixed image region, which will
  // act by default as the virtual domain in this example.
  field->SetRegions( fixedImage->GetLargestPossibleRegion() );
  //make sure the field has the same spatial information as the image
  field->CopyInformation( fixedImage );
  std::cout << "fixedImage->GetLargestPossibleRegion(): "
            << fixedImage->GetLargestPossibleRegion() << std::endl
            << "fixedImage->GetBufferedRegion(): "
            << fixedImage->GetBufferedRegion() << std::endl;
  field->Allocate();
  // Fill it with 0's
  typename DisplacementTransformType::OutputVectorType zeroVector;
  zeroVector.Fill( 0 );
  field->FillBuffer( zeroVector );
  // Assign to transform
  displacementTransform->SetDisplacementField( field );
  displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField( 5 );
  displacementTransform->SetGaussianSmoothingVarianceForTheTotalField( 6 );

  //identity transform for fixed image
  typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
  typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  // The metric
  typedef itk::ImageToImageMetricv4
    < FixedImageType, MovingImageType >         MetricBaseType;
  typename MetricBaseType::Pointer metric;

  if (metricString.compare("ms") == 0)
    {
    typedef itk::MeanSquaresImageToImageMetricv4
      < FixedImageType, MovingImageType >           MeanSquaresMetricType;
    typename MeanSquaresMetricType::Pointer meanSquaresMetric = MeanSquaresMetricType::New();
    metric = meanSquaresMetric.GetPointer();
    }
  else if (metricString.compare("mi") == 0)
    {
    typedef itk::JointHistogramMutualInformationImageToImageMetricv4
      < FixedImageType, MovingImageType >                   MIMetricType;
    typedef typename MIMetricType::FixedSampledPointSetType PointSetType;
    typename MIMetricType::Pointer miMetric = MIMetricType::New();
    metric = miMetric.GetPointer();

    miMetric->SetNumberOfHistogramBins(20);
    typedef typename PointSetType::PointType     PointType;
    typename PointSetType::Pointer               pset(PointSetType::New());
    unsigned long ind=0,ct=0;
    itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
    for( It.GoToBegin(); !It.IsAtEnd(); ++It )
      {
      // take every N^th point
      if ( ct % 20 == 0  )
        {
          PointType pt;
          fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
          pset->SetPoint(ind, pt);
          ind++;
        }
        ct++;
      }
    std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
    miMetric->SetFixedSampledPointSet( pset );
    miMetric->SetUseFixedSampledPointSet( true );
    std::cout << "Testing metric with point set..." << std::endl;
    }
  else if (metricString.compare("anc") == 0)
    {
    // The metric
    typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4
      < FixedImageType, MovingImageType > ANCMetricType;
    typename ANCMetricType::Pointer nbcMetric = ANCMetricType::New();
    metric = nbcMetric.GetPointer();

    itk::Size<Dimension> radSize;
    radSize.Fill(2);
    nbcMetric->SetRadius(radSize);
    }
  else
    {
    std::cerr << "The given metric type is not supported: " << metricString << std::endl;
    std::cerr << "The supported metric types are: " << std::endl;
    std::cerr << "   ms   - MeanSquaresImageToImageMetricv4" << std::endl;
    std::cerr << "   mi   - JointHistogramMutualInformationImageToImageMetricv4" << std::endl;
    std::cerr << "   anc  - ANTSNeighborhoodCorrelationImageToImageMetricv4" << std::endl;
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }
  // Assign images and transforms.
  // By not setting a virtual domain image or virtual domain settings,
  // the metric will use the fixed image for the virtual domain.
  metric->SetFixedImage( fixedImage );
  metric->SetMovingImage( movingImage );
  metric->SetFixedTransform( identityTransform );
  metric->SetMovingTransform( affineTransform );
  bool gaussian = false;
  metric->SetUseMovingImageGradientFilter( gaussian );
  metric->SetUseFixedImageGradientFilter( gaussian );
  metric->Initialize();

  typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricBaseType > RegistrationParameterScalesFromShiftType;
  typename RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
  shiftScaleEstimator->SetMetric(metric);

  std::cout << "First do an affine registration " << std::endl;

  typedef itk::QuasiNewtonOptimizerv4  OptimizerType;
  typename OptimizerType::Pointer  optimizer = OptimizerType::New();
  optimizer->SetMetric( metric );
  optimizer->SetNumberOfIterations( numberOfIterations );
  optimizer->SetScalesEstimator( shiftScaleEstimator );
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during deformation Optimization:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Follow affine with deformable registration " << std::endl;
  // now add the displacement field to the composite transform
  compositeTransform->AddTransform( affineTransform );
  compositeTransform->AddTransform( displacementTransform );
  compositeTransform->SetAllTransformsToOptimizeOn(); //Set back to optimize all.
  compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); //set to optimize the displacement field
  metric->SetMovingTransform( compositeTransform );
  metric->SetUseFixedSampledPointSet( false );
  metric->Initialize();

  // Optimizer
  typename RegistrationParameterScalesFromShiftType::ScalesType
    displacementScales( displacementTransform->GetNumberOfLocalParameters() );
  displacementScales.Fill(1);
  optimizer->SetMetric( metric );
  optimizer->SetNumberOfIterations( numberOfDisplacementIterations );
  optimizer->SetScalesEstimator( shiftScaleEstimator );
  try
    {
    optimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during deformation Optimization:" << std::endl;
    std::cout << e.GetLocation() << std::endl;
    std::cout << e.GetDescription() << std::endl;
    std::cout << e.what()    << std::endl;
    std::cout << "Test FAILED." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "...finished. " << std::endl;


  //warp the image with the displacement field
  resample->SetTransform( compositeTransform );
  resample->SetInput( movingImageReader->GetOutput() );
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 0 );
  resample->Update();
  //write out the displacement field
  typedef itk::ImageFileWriter< DisplacementFieldType >  DisplacementWriterType;
  typename DisplacementWriterType::Pointer      displacementwriter =  DisplacementWriterType::New();
  std::string outfilename( argv[5] );
  std::string ext = itksys::SystemTools::GetFilenameExtension( outfilename );
  std::string name = itksys::SystemTools::GetFilenameWithoutExtension( outfilename );
  std::string defout = name + std::string("_def") + ext;
  displacementwriter->SetFileName( defout.c_str() );
  displacementwriter->SetInput( displacementTransform->GetDisplacementField() );
  displacementwriter->Update();

  //write the warped image into a file
  //typedef double                                    OutputPixelType;
  typedef unsigned short                            OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >  OutputImageType;
  typedef itk::CastImageFilter<
                        MovingImageType,
                        OutputImageType >           CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >   WriterType;
  typename WriterType::Pointer      writer =  WriterType::New();
  typename CastFilterType::Pointer  caster =  CastFilterType::New();
  writer->SetFileName( argv[5] );
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput() );
  writer->Update();

  std::cout << "Test PASSED." << affineTransform->GetParameters() << std::endl;
  return EXIT_SUCCESS;

}

int itkQuasiNewtonOptimizerv4RegistrationTest(int argc, char *argv[])
{
  if( argc < 5 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " dimension";
    std::cerr << " metric-type{ms|mi|anc}";
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile ";
    std::cerr << " [numberOfIterations numberOfDisplacementIterations] ";
    std::cerr << std::endl;
    std::cerr << " The metric types are: " << std::endl;
    std::cerr << "   ms   - MeanSquaresImageToImageMetricv4" << std::endl;
    std::cerr << "   mi   - JointHistogramMutualInformationImageToImageMetricv4" << std::endl;
    std::cerr << "   anc  - ANTSNeighborhoodCorrelationImageToImageMetricv4" << std::endl;
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }

  unsigned int Dimension = atoi(argv[1]);

  if (Dimension==2)
    {
    typedef itk::AffineTransform<double, 2>   AffineTransformType;
    //typedef itk::Euler2DTransform<double>             AffineTransformType;
    return itkQuasiNewtonOptimizerv4RegistrationTestMain
      <2, AffineTransformType>(argc, argv);
    }
  else if (Dimension==3)
    {
    typedef itk::AffineTransform<double, 3>   AffineTransformType;
    //typedef itk::Euler3DTransform<double>             AffineTransformType;
    return itkQuasiNewtonOptimizerv4RegistrationTestMain
      <3, AffineTransformType>(argc, argv);
    }
  else
    {
    std::cerr << "Dimension not supported: " << Dimension << std::endl;
    std::cerr << "Dimension supported: 2 3" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;

}