1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/**
* Test program for image registration with multiple metric types and
* QuasiNewtonOptimizerv4 classes.
*
* Perform a registration using user-supplied images.
* No numerical verification is performed. Test passes as long
* as no exception occurs.
*/
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkQuasiNewtonOptimizerv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkIdentityTransform.h"
#include "itkTranslationTransform.h"
#include "itkAffineTransform.h"
#include "itkEuler2DTransform.h"
#include "itkEuler3DTransform.h"
#include "itkCompositeTransform.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkRegistrationParameterScalesFromJacobian.h"
#include "itkCastImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCommand.h"
#include "itksys/SystemTools.hxx"
#include "itkResampleImageFilter.h"
template<unsigned int Dimension, typename TAffineTransform>
int itkQuasiNewtonOptimizerv4RegistrationTestMain(int argc, char *argv[])
{
std::string metricString = argv[2];
unsigned int numberOfIterations = 10;
unsigned int numberOfDisplacementIterations = 10;
if( argc >= 7 )
{
numberOfIterations = atoi( argv[6] );
}
if( argc >= 8 )
{
numberOfDisplacementIterations = atoi( argv[7] );
}
std::cout << " iterations "<< numberOfIterations
<< " displacementIterations " << numberOfDisplacementIterations << std::endl;
typedef double PixelType; //I assume png is unsigned short
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
typename FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
typename MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[3] );
movingImageReader->SetFileName( argv[4] );
//get the images
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
movingImageReader->Update();
typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
/** define a resample filter that will ultimately be used to deform the image */
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
typename ResampleFilterType::Pointer resample = ResampleFilterType::New();
/** create a composite transform holder for other transforms */
typedef itk::CompositeTransform<double, Dimension> CompositeType;
typename CompositeType::Pointer compositeTransform = CompositeType::New();
//create an affine transform
typedef TAffineTransform AffineTransformType;
typename AffineTransformType::Pointer affineTransform = AffineTransformType::New();
affineTransform->SetIdentity();
std::cout <<" affineTransform params " << affineTransform->GetParameters() << std::endl;
typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform<
double, Dimension>
DisplacementTransformType;
typename DisplacementTransformType::Pointer displacementTransform =
DisplacementTransformType::New();
typedef typename DisplacementTransformType::DisplacementFieldType
DisplacementFieldType;
typename DisplacementFieldType::Pointer field = DisplacementFieldType::New();
//set the field to be the same as the fixed image region, which will
// act by default as the virtual domain in this example.
field->SetRegions( fixedImage->GetLargestPossibleRegion() );
//make sure the field has the same spatial information as the image
field->CopyInformation( fixedImage );
std::cout << "fixedImage->GetLargestPossibleRegion(): "
<< fixedImage->GetLargestPossibleRegion() << std::endl
<< "fixedImage->GetBufferedRegion(): "
<< fixedImage->GetBufferedRegion() << std::endl;
field->Allocate();
// Fill it with 0's
typename DisplacementTransformType::OutputVectorType zeroVector;
zeroVector.Fill( 0 );
field->FillBuffer( zeroVector );
// Assign to transform
displacementTransform->SetDisplacementField( field );
displacementTransform->SetGaussianSmoothingVarianceForTheUpdateField( 5 );
displacementTransform->SetGaussianSmoothingVarianceForTheTotalField( 6 );
//identity transform for fixed image
typedef itk::IdentityTransform<double, Dimension> IdentityTransformType;
typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
identityTransform->SetIdentity();
// The metric
typedef itk::ImageToImageMetricv4
< FixedImageType, MovingImageType > MetricBaseType;
typename MetricBaseType::Pointer metric;
if (metricString.compare("ms") == 0)
{
typedef itk::MeanSquaresImageToImageMetricv4
< FixedImageType, MovingImageType > MeanSquaresMetricType;
typename MeanSquaresMetricType::Pointer meanSquaresMetric = MeanSquaresMetricType::New();
metric = meanSquaresMetric.GetPointer();
}
else if (metricString.compare("mi") == 0)
{
typedef itk::JointHistogramMutualInformationImageToImageMetricv4
< FixedImageType, MovingImageType > MIMetricType;
typedef typename MIMetricType::FixedSampledPointSetType PointSetType;
typename MIMetricType::Pointer miMetric = MIMetricType::New();
metric = miMetric.GetPointer();
miMetric->SetNumberOfHistogramBins(20);
typedef typename PointSetType::PointType PointType;
typename PointSetType::Pointer pset(PointSetType::New());
unsigned long ind=0,ct=0;
itk::ImageRegionIteratorWithIndex<FixedImageType> It(fixedImage, fixedImage->GetLargestPossibleRegion() );
for( It.GoToBegin(); !It.IsAtEnd(); ++It )
{
// take every N^th point
if ( ct % 20 == 0 )
{
PointType pt;
fixedImage->TransformIndexToPhysicalPoint( It.GetIndex(), pt);
pset->SetPoint(ind, pt);
ind++;
}
ct++;
}
std::cout << "Setting point set with " << ind << " points of " << fixedImage->GetLargestPossibleRegion().GetNumberOfPixels() << " total " << std::endl;
miMetric->SetFixedSampledPointSet( pset );
miMetric->SetUseFixedSampledPointSet( true );
std::cout << "Testing metric with point set..." << std::endl;
}
else if (metricString.compare("anc") == 0)
{
// The metric
typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4
< FixedImageType, MovingImageType > ANCMetricType;
typename ANCMetricType::Pointer nbcMetric = ANCMetricType::New();
metric = nbcMetric.GetPointer();
itk::Size<Dimension> radSize;
radSize.Fill(2);
nbcMetric->SetRadius(radSize);
}
else
{
std::cerr << "The given metric type is not supported: " << metricString << std::endl;
std::cerr << "The supported metric types are: " << std::endl;
std::cerr << " ms - MeanSquaresImageToImageMetricv4" << std::endl;
std::cerr << " mi - JointHistogramMutualInformationImageToImageMetricv4" << std::endl;
std::cerr << " anc - ANTSNeighborhoodCorrelationImageToImageMetricv4" << std::endl;
std::cerr << std::endl;
return EXIT_FAILURE;
}
// Assign images and transforms.
// By not setting a virtual domain image or virtual domain settings,
// the metric will use the fixed image for the virtual domain.
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetFixedTransform( identityTransform );
metric->SetMovingTransform( affineTransform );
bool gaussian = false;
metric->SetUseMovingImageGradientFilter( gaussian );
metric->SetUseFixedImageGradientFilter( gaussian );
metric->Initialize();
typedef itk::RegistrationParameterScalesFromPhysicalShift< MetricBaseType > RegistrationParameterScalesFromShiftType;
typename RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
shiftScaleEstimator->SetMetric(metric);
std::cout << "First do an affine registration " << std::endl;
typedef itk::QuasiNewtonOptimizerv4 OptimizerType;
typename OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
try
{
optimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during deformation Optimization:" << std::endl;
std::cout << e.GetLocation() << std::endl;
std::cout << e.GetDescription() << std::endl;
std::cout << e.what() << std::endl;
std::cout << "Test FAILED." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Follow affine with deformable registration " << std::endl;
// now add the displacement field to the composite transform
compositeTransform->AddTransform( affineTransform );
compositeTransform->AddTransform( displacementTransform );
compositeTransform->SetAllTransformsToOptimizeOn(); //Set back to optimize all.
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn(); //set to optimize the displacement field
metric->SetMovingTransform( compositeTransform );
metric->SetUseFixedSampledPointSet( false );
metric->Initialize();
// Optimizer
typename RegistrationParameterScalesFromShiftType::ScalesType
displacementScales( displacementTransform->GetNumberOfLocalParameters() );
displacementScales.Fill(1);
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfDisplacementIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
try
{
optimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during deformation Optimization:" << std::endl;
std::cout << e.GetLocation() << std::endl;
std::cout << e.GetDescription() << std::endl;
std::cout << e.what() << std::endl;
std::cout << "Test FAILED." << std::endl;
return EXIT_FAILURE;
}
std::cout << "...finished. " << std::endl;
//warp the image with the displacement field
resample->SetTransform( compositeTransform );
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 0 );
resample->Update();
//write out the displacement field
typedef itk::ImageFileWriter< DisplacementFieldType > DisplacementWriterType;
typename DisplacementWriterType::Pointer displacementwriter = DisplacementWriterType::New();
std::string outfilename( argv[5] );
std::string ext = itksys::SystemTools::GetFilenameExtension( outfilename );
std::string name = itksys::SystemTools::GetFilenameWithoutExtension( outfilename );
std::string defout = name + std::string("_def") + ext;
displacementwriter->SetFileName( defout.c_str() );
displacementwriter->SetInput( displacementTransform->GetDisplacementField() );
displacementwriter->Update();
//write the warped image into a file
//typedef double OutputPixelType;
typedef unsigned short OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
MovingImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
typename WriterType::Pointer writer = WriterType::New();
typename CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[5] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
std::cout << "Test PASSED." << affineTransform->GetParameters() << std::endl;
return EXIT_SUCCESS;
}
int itkQuasiNewtonOptimizerv4RegistrationTest(int argc, char *argv[])
{
if( argc < 5 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " dimension";
std::cerr << " metric-type{ms|mi|anc}";
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImageFile ";
std::cerr << " [numberOfIterations numberOfDisplacementIterations] ";
std::cerr << std::endl;
std::cerr << " The metric types are: " << std::endl;
std::cerr << " ms - MeanSquaresImageToImageMetricv4" << std::endl;
std::cerr << " mi - JointHistogramMutualInformationImageToImageMetricv4" << std::endl;
std::cerr << " anc - ANTSNeighborhoodCorrelationImageToImageMetricv4" << std::endl;
std::cerr << std::endl;
return EXIT_FAILURE;
}
unsigned int Dimension = atoi(argv[1]);
if (Dimension==2)
{
typedef itk::AffineTransform<double, 2> AffineTransformType;
//typedef itk::Euler2DTransform<double> AffineTransformType;
return itkQuasiNewtonOptimizerv4RegistrationTestMain
<2, AffineTransformType>(argc, argv);
}
else if (Dimension==3)
{
typedef itk::AffineTransform<double, 3> AffineTransformType;
//typedef itk::Euler3DTransform<double> AffineTransformType;
return itkQuasiNewtonOptimizerv4RegistrationTestMain
<3, AffineTransformType>(argc, argv);
}
else
{
std::cerr << "Dimension not supported: " << Dimension << std::endl;
std::cerr << "Dimension supported: 2 3" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|