1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkAffineTransform.h"
#include "itkCompositeTransform.h"
#include "itkEuler2DTransform.h"
#include "itkEuler3DTransform.h"
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkObjectToObjectMultiMetricv4.h"
template <unsigned int TImageDimension>
class RigidTransformTraits
{
public:
typedef itk::AffineTransform<double, TImageDimension> TransformType;
};
template <>
class RigidTransformTraits<2>
{
public:
typedef itk::Euler2DTransform<double> TransformType;
};
template <>
class RigidTransformTraits<3>
{
public:
typedef itk::Euler3DTransform<double> TransformType;
};
template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
const TFilter * filter =
dynamic_cast< const TFilter * >( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{ return; }
unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension( currentLevel );
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();
const itk::ObjectToObjectOptimizerBase* optimizerBase = filter->GetOptimizer();
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename GradientDescentOptimizerv4Type::ConstPointer optimizer = dynamic_cast<const GradientDescentOptimizerv4Type *>(optimizerBase);
if( !optimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
typename GradientDescentOptimizerv4Type::DerivativeType gradient = optimizer->GetGradient();
/* orig
std::cout << " Current level = " << currentLevel << std::endl;
std::cout << " shrink factor = " << shrinkFactors[currentLevel] << std::endl;
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
std::cout << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
*/
//debug:
std::cout << " CL Current level: " << currentLevel << std::endl;
std::cout << " SF Shrink factor: " << shrinkFactors << std::endl;
std::cout << " SS Smoothing sigma: " << smoothingSigmas[currentLevel] << std::endl;
std::cout << " RFP Required fixed params: " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
std::cout << " LR Final learning rate: " << optimizer->GetLearningRate() << std::endl;
std::cout << " FM Final metric value: " << optimizer->GetCurrentMetricValue() << std::endl;
std::cout << " SC Optimizer scales: " << optimizer->GetScales() << std::endl;
std::cout << " FG Final metric gradient (sample of values): ";
if( gradient.GetSize() < 10 )
{
std::cout << gradient;
}
else
{
for( itk::SizeValueType i = 0; i < gradient.GetSize(); i += (gradient.GetSize() / 16) )
{
std::cout << gradient[i] << " ";
}
}
std::cout << std::endl;
}
};
template <unsigned int VImageDimension>
int PerformSimpleImageRegistration2( int argc, char *argv[] )
{
if( argc < 6 )
{
std::cout << argv[0] << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl;
exit( 1 );
}
typedef double PixelType;
typedef itk::Image<PixelType, VImageDimension> FixedImageType;
typedef itk::Image<PixelType, VImageDimension> MovingImageType;
typedef itk::ImageFileReader<FixedImageType> ImageReaderType;
typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
fixedImageReader->SetFileName( argv[2] );
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
fixedImage->Update();
fixedImage->DisconnectPipeline();
typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[3] );
movingImageReader->Update();
typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
movingImage->Update();
movingImage->DisconnectPipeline();
// Set up MI metric
typedef itk::JointHistogramMutualInformationImageToImageMetricv4<FixedImageType, MovingImageType> MIMetricType;
typename MIMetricType::Pointer mutualInformationMetric = MIMetricType::New();
mutualInformationMetric->SetNumberOfHistogramBins( 20 );
mutualInformationMetric->SetUseMovingImageGradientFilter( false );
mutualInformationMetric->SetUseFixedImageGradientFilter( false );
mutualInformationMetric->SetUseFixedSampledPointSet( false );
// Set up CC metric
typedef itk::CorrelationImageToImageMetricv4<FixedImageType, MovingImageType> GlobalCorrelationMetricType;
typename GlobalCorrelationMetricType::Pointer gCorrelationMetric = GlobalCorrelationMetricType::New();
// Stage1: Rigid registration
//
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType> RegistrationType;
typename RegistrationType::Pointer rigidRegistration = RegistrationType::New();
rigidRegistration->SetObjectName("RigidSimple");
// Set up rigid multi metric: It only has one metric component
typedef itk::ObjectToObjectMultiMetricv4<VImageDimension, VImageDimension> MultiMetricType;
typename MultiMetricType::Pointer rigidMultiMetric = MultiMetricType::New();
rigidMultiMetric->AddMetric( mutualInformationMetric );
rigidRegistration->SetMetric( rigidMultiMetric );
rigidRegistration->SetFixedImage( fixedImage );
rigidRegistration->SetMovingImage( movingImage );
// Rigid transform that is set to be optimized
typedef typename RigidTransformTraits<VImageDimension>::TransformType RigidTransformType;
typename RigidTransformType::Pointer rigidTransform = RigidTransformType::New();
rigidRegistration->SetInitialTransform( rigidTransform );
rigidRegistration->InPlaceOn();
typename RegistrationType::ShrinkFactorsArrayType rigidShrinkFactorsPerLevel;
rigidShrinkFactorsPerLevel.SetSize( 3 );
rigidShrinkFactorsPerLevel[0] = 4;
rigidShrinkFactorsPerLevel[1] = 4;
rigidShrinkFactorsPerLevel[2] = 4;
rigidRegistration->SetShrinkFactorsPerLevel( rigidShrinkFactorsPerLevel );
typename RegistrationType::MetricSamplingStrategyType rigidSamplingStrategy = RegistrationType::RANDOM;
double rigidSamplingPercentage = 0.20;
rigidRegistration->SetMetricSamplingStrategy( rigidSamplingStrategy );
rigidRegistration->SetMetricSamplingPercentage( rigidSamplingPercentage );
typedef itk::RegistrationParameterScalesFromPhysicalShift<MIMetricType> RigidScalesEstimatorType;
typename RigidScalesEstimatorType::Pointer rigidScalesEstimator = RigidScalesEstimatorType::New();
rigidScalesEstimator->SetMetric( mutualInformationMetric );
rigidScalesEstimator->SetTransformForward( true );
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
GradientDescentOptimizerv4Type * rigidOptimizer = dynamic_cast<GradientDescentOptimizerv4Type *>( rigidRegistration->GetModifiableOptimizer() );
if( !rigidOptimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
rigidOptimizer->SetLearningRate( 0.1 );
#ifdef NDEBUG
rigidOptimizer->SetNumberOfIterations( atoi( argv[5] ) );
#else
rigidOptimizer->SetNumberOfIterations( 1 );
#endif
rigidOptimizer->SetDoEstimateLearningRateOnce( false ); //true by default
rigidOptimizer->SetDoEstimateLearningRateAtEachIteration( true );
rigidOptimizer->SetScalesEstimator( rigidScalesEstimator );
typedef CommandIterationUpdate<RegistrationType> CommandType;
typename CommandType::Pointer rigidObserver = CommandType::New();
rigidRegistration->AddObserver( itk::MultiResolutionIterationEvent(), rigidObserver );
// Stage2: Affine registration
//
typename RegistrationType::Pointer affineSimple = RegistrationType::New();
affineSimple->SetObjectName("affineSimple");
// Ensuring code coverage for boolean macros
affineSimple->SmoothingSigmasAreSpecifiedInPhysicalUnitsOff();
affineSimple->SetSmoothingSigmasAreSpecifiedInPhysicalUnits( false );
if( affineSimple->GetSmoothingSigmasAreSpecifiedInPhysicalUnits() != false )
{
std::cerr << "Returned unexpected value of TRUE." << std::endl;
return EXIT_FAILURE;
}
// Set up affine multi metric: It has two metric components
typename MultiMetricType::Pointer affineMultiMetric = MultiMetricType::New();
affineMultiMetric->AddMetric( mutualInformationMetric );
affineMultiMetric->AddMetric( gCorrelationMetric );
affineSimple->SetMetric( affineMultiMetric );
affineSimple->SetFixedImage( 0, fixedImage );
affineSimple->SetMovingImage( 0, movingImage );
affineSimple->SetFixedImage( 1, fixedImage );
affineSimple->SetMovingImage( 1, movingImage );
typedef itk::AffineTransform<double, VImageDimension> AffineTransformType;
typename AffineTransformType::Pointer affineTransform = AffineTransformType::New();
affineSimple->SetInitialTransform( affineTransform );
affineSimple->InPlaceOn();
affineSimple->SetMovingInitialTransformInput( rigidRegistration->GetTransformOutput() );
typedef itk::RegistrationParameterScalesFromPhysicalShift<MIMetricType> AffineScalesEstimatorType;
typename AffineScalesEstimatorType::Pointer scalesEstimator1 = AffineScalesEstimatorType::New();
scalesEstimator1->SetMetric( mutualInformationMetric );
scalesEstimator1->SetTransformForward( true );
affineSimple->SmoothingSigmasAreSpecifiedInPhysicalUnitsOn();
affineSimple->SetSmoothingSigmasAreSpecifiedInPhysicalUnits( true );
if( affineSimple->GetSmoothingSigmasAreSpecifiedInPhysicalUnits() != true )
{
std::cerr << "Returned unexpected value of FALSE." << std::endl;
return EXIT_FAILURE;
}
// Smooth by specified gaussian sigmas for each level. These values are specified in
// physical units. Sigmas of zero cause inconsistency between some platforms.
{
typename RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 1; //0;
affineSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
}
typename GradientDescentOptimizerv4Type::Pointer affineOptimizer =
dynamic_cast<GradientDescentOptimizerv4Type * >( affineSimple->GetModifiableOptimizer() );
if( !affineOptimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
#ifdef NDEBUG
affineOptimizer->SetNumberOfIterations( atoi( argv[5] ) );
#else
affineOptimizer->SetNumberOfIterations( 1 );
#endif
affineOptimizer->SetDoEstimateLearningRateOnce( false ); //true by default
affineOptimizer->SetDoEstimateLearningRateAtEachIteration( true );
affineOptimizer->SetScalesEstimator( scalesEstimator1 );
typename CommandType::Pointer affineObserver = CommandType::New();
affineSimple->AddObserver( itk::IterationEvent(), affineObserver );
try
{
std::cout << "Affine txf:" << std::endl;
affineSimple->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
{
std::cout << "Affine parameters after registration: " << std::endl
<< affineOptimizer->GetCurrentPosition() << std::endl
<< "Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl
<< std::endl << " optimizer: " << affineOptimizer->GetNumberOfThreads() << std::endl;
}
typedef itk::CompositeTransform< double, VImageDimension > CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform = CompositeTransformType::New();
compositeTransform->AddTransform( rigidTransform );
compositeTransform->AddTransform( affineTransform );
typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> ResampleFilterType;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( compositeTransform );
resampler->SetInput( movingImage );
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 0 );
resampler->Update();
typedef itk::ImageFileWriter<FixedImageType> WriterType;
typename WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[4] );
writer->SetInput( resampler->GetOutput() );
writer->Update();
return EXIT_SUCCESS;
}
int itkSimpleImageRegistrationTest2( int argc, char *argv[] )
{
if( argc < 6 )
{
std::cout << argv[0] << " imageDimension fixedImage movingImage outputImage numberOfAffineIterations" << std::endl;
exit( 1 );
}
switch( atoi( argv[1] ) )
{
case 2:
return PerformSimpleImageRegistration2<2>( argc, argv );
case 3:
return PerformSimpleImageRegistration2<3>( argc, argv );
default:
std::cerr << "Unsupported dimension" << std::endl;
exit( EXIT_FAILURE );
}
return EXIT_SUCCESS;
}
|