1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkEuler2DTransform.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkTestingMacros.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkConjugateGradientLineSearchOptimizerv4.h"
#include <iomanip>
namespace
{
template<typename TOptimizer>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate()
{
// mark used to avoid warnings
(void) &Self::Clone;
};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
const TOptimizer *optimizer = dynamic_cast< const TOptimizer * > (object);
if( typeid( event ) != typeid( itk::IterationEvent ) || !optimizer )
{ return; }
// stash the stream state
std::ios state(NULL);
state.copyfmt(std::cout);
std::cout << std::fixed << std::setfill(' ') << std::setprecision( 5 );
std::cout << std::setw(3) << optimizer->GetCurrentIteration();
std::cout << " = " << std::setw(10) << optimizer->GetCurrentMetricValue();
std::cout << " : " << optimizer->GetCurrentPosition() << std::endl;
std::cout << "\nScales: " << optimizer->GetScales() << std::endl;
}
};
template<unsigned int TDimension>
int ImageRegistration( int itkNotUsed( argc ), char *argv[] )
{
const unsigned int ImageDimension = TDimension;
typedef float PixelType;
typedef itk::Image<PixelType, ImageDimension> FixedImageType;
typedef itk::Image<PixelType, ImageDimension> MovingImageType;
typedef itk::ImageFileReader<FixedImageType> ImageReaderType;
typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
fixedImageReader->SetFileName( argv[2] );
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
fixedImage->Update();
fixedImage->DisconnectPipeline();
typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[3] );
movingImageReader->Update();
typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
movingImage->Update();
movingImage->DisconnectPipeline();
// Set up the centered transform initializer
typedef itk::Euler2DTransform<double> TransformType;
typename TransformType::Pointer initialTransform = TransformType::New();
typedef itk::MeanSquaresImageToImageMetricv4<FixedImageType, MovingImageType> MetricType;
typename MetricType::Pointer metric = MetricType::New();
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType> RegistrationType;
typename RegistrationType::Pointer registration = RegistrationType::New();
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImage );
registration->SetMetric( metric );
registration->SetMovingInitialTransform( initialTransform );
registration->SetNumberOfLevels(1);
typedef itk::ConjugateGradientLineSearchOptimizerv4 Optimizerv4Type;
typename Optimizerv4Type::Pointer optimizer = Optimizerv4Type::New();
optimizer->SetLearningRate( 1.0 );
optimizer->SetNumberOfIterations( 100 );
optimizer->SetMinimumConvergenceValue(1e-5);
optimizer->SetConvergenceWindowSize(2);
double scaleData[] = {200000,1.0,1.0};
typename Optimizerv4Type::ScalesType::Superclass scales( scaleData, 3);
optimizer->SetScales( scales );
registration->SetOptimizer(optimizer);
typedef CommandIterationUpdate<Optimizerv4Type> CommandType;
typename CommandType::Pointer observer = CommandType::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
registration->GetTransform()->Print(std::cout);
std::cout << optimizer->GetStopConditionDescription() << std::endl;
typename TransformType::ParametersType results = registration->GetTransform()->GetParameters();
std::cout << "Expecting close (+/- 0.3) to: ( 0.0, -2.8, 9.5 )" << std::endl;
std::cout << "Parameters: " << results << std::endl;
std::cout << "Number Of Iterations: " << optimizer->GetCurrentIteration();
TEST_EXPECT_TRUE( optimizer->GetCurrentIteration() > 5 );
return EXIT_SUCCESS;
}
}
int itkSimpleImageRegistrationTest4( int argc, char *argv[] )
{
if ( argc < 4 )
{
std::cout << argv[0] << " imageDimension fixedImage movingImage" << std::endl;
exit( 1 );
}
switch( atoi( argv[1] ) )
{
case 2:
return ImageRegistration<2>( argc, argv );
default:
std::cerr << "Unsupported dimension" << std::endl;
exit( EXIT_FAILURE );
}
return EXIT_SUCCESS;
}
|