1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkAffineTransform.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkImageMaskSpatialObject.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
if(object == ITK_NULLPTR)
{
itkExceptionMacro(<< "Command update on null object");
}
std::cout << "Observing from class " << object->GetNameOfClass();
if (!object->GetObjectName().empty())
{
std::cout << " \"" << object->GetObjectName() << "\"";
}
std::cout << std::endl;
const TFilter * filter = static_cast< const TFilter * >( object );
if( typeid( event ) != typeid( itk::MultiResolutionIterationEvent ) || object == ITK_NULLPTR )
{ return; }
unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension( currentLevel );
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();
const itk::ObjectToObjectOptimizerBase* optimizerBase = filter->GetOptimizer();
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename GradientDescentOptimizerv4Type::ConstPointer optimizer = dynamic_cast<const GradientDescentOptimizerv4Type *>(optimizerBase);
if( !optimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
typename GradientDescentOptimizerv4Type::DerivativeType gradient = optimizer->GetGradient();
std::cout << " CL Current level: " << currentLevel << std::endl;
std::cout << " SF Shrink factor: " << shrinkFactors << std::endl;
std::cout << " SS Smoothing sigma: " << smoothingSigmas[currentLevel] << std::endl;
if (adaptors[currentLevel])
{
std::cout << " RFP Required fixed params: " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
}
std::cout << " LR Final learning rate: " << optimizer->GetLearningRate() << std::endl;
std::cout << " FM Final metric value: " << optimizer->GetCurrentMetricValue() << std::endl;
std::cout << " SC Optimizer scales: " << optimizer->GetScales() << std::endl;
std::cout << " FG Final metric gradient (sample of values): ";
if( gradient.GetSize() < 10 )
{
std::cout << gradient;
}
else
{
for( itk::SizeValueType i = 0; i < gradient.GetSize(); i += (gradient.GetSize() / 16) )
{
std::cout << gradient[i] << " ";
}
}
std::cout << std::endl;
}
};
template <unsigned int VImageDimension, typename TPixel>
int PerformSimpleImageRegistrationWithMaskAndSampling( int argc, char *argv[] )
{
if( argc < 7 )
{
std::cout << argv[0] << " pixelType imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl;
exit( 1 );
}
typedef TPixel PixelType;
typedef itk::Image<PixelType, VImageDimension> FixedImageType;
typedef itk::Image<PixelType, VImageDimension> MovingImageType;
typedef itk::ImageFileReader<FixedImageType> ImageReaderType;
typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
fixedImageReader->SetFileName( argv[3] );
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
fixedImage->Update();
fixedImage->DisconnectPipeline();
// Create a fixed mask. We're going to mask the mask region coextensive with the
// fixed image just to illustrate the concept of masking.
typedef itk::ImageMaskSpatialObject<VImageDimension> ImageMaskSpatialObjectType;
typedef typename ImageMaskSpatialObjectType::ImageType MaskImageType;
typename MaskImageType::Pointer maskImage = MaskImageType::New();
maskImage->CopyInformation( fixedImage );
maskImage->SetRegions( fixedImage->GetRequestedRegion() );
maskImage->Allocate();
maskImage->FillBuffer( itk::NumericTraits<typename MaskImageType::PixelType>::OneValue() );
typename ImageMaskSpatialObjectType::Pointer maskSpatialObject = ImageMaskSpatialObjectType::New();
maskSpatialObject->SetImage( maskImage );
typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[4] );
movingImageReader->Update();
typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
movingImage->Update();
movingImage->DisconnectPipeline();
typedef itk::AffineTransform<double, VImageDimension> AffineTransformType;
typename AffineTransformType::Pointer affineTransform = AffineTransformType::New();
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType> AffineRegistrationType;
typename AffineRegistrationType::Pointer affineSimple = AffineRegistrationType::New();
affineSimple->SetObjectName("affineSimple");
affineSimple->SetFixedImage( fixedImage );
affineSimple->SetMovingImage( movingImage );
affineSimple->SetMetricSamplingStrategy( AffineRegistrationType::REGULAR );
affineSimple->SetMetricSamplingPercentage( 0.5 );
affineSimple->SetInitialTransform(affineTransform);
affineSimple->InPlaceOn();
// Ensuring code coverage for boolean macros
affineSimple->SmoothingSigmasAreSpecifiedInPhysicalUnitsOff();
affineSimple->SetSmoothingSigmasAreSpecifiedInPhysicalUnits( false );
if( affineSimple->GetSmoothingSigmasAreSpecifiedInPhysicalUnits() != false )
{
std::cerr << "Returned unexpected value of TRUE." << std::endl;
return EXIT_FAILURE;
}
typedef itk::JointHistogramMutualInformationImageToImageMetricv4<FixedImageType, MovingImageType> MIMetricType;
typename MIMetricType::Pointer mutualInformationMetric = MIMetricType::New();
mutualInformationMetric->SetNumberOfHistogramBins( 20 );
mutualInformationMetric->SetUseMovingImageGradientFilter( false );
mutualInformationMetric->SetUseFixedImageGradientFilter( false );
mutualInformationMetric->SetUseFixedSampledPointSet( false );
mutualInformationMetric->SetVirtualDomainFromImage( fixedImage );
mutualInformationMetric->SetFixedImageMask( maskSpatialObject );
affineSimple->SetMetric( mutualInformationMetric );
typedef itk::RegistrationParameterScalesFromPhysicalShift<MIMetricType> AffineScalesEstimatorType;
typename AffineScalesEstimatorType::Pointer scalesEstimator1 = AffineScalesEstimatorType::New();
scalesEstimator1->SetMetric( mutualInformationMetric );
scalesEstimator1->SetTransformForward( true );
affineSimple->SmoothingSigmasAreSpecifiedInPhysicalUnitsOn();
affineSimple->SetSmoothingSigmasAreSpecifiedInPhysicalUnits( true );
if( affineSimple->GetSmoothingSigmasAreSpecifiedInPhysicalUnits() != true )
{
std::cerr << "Returned unexpected value of FALSE." << std::endl;
return EXIT_FAILURE;
}
// Smooth by specified gaussian sigmas for each level. These values are specified in
// physical units. Sigmas of zero cause inconsistency between some platforms.
{
typename AffineRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 1; //0;
affineSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
}
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename GradientDescentOptimizerv4Type::Pointer affineOptimizer =
dynamic_cast<GradientDescentOptimizerv4Type * >( affineSimple->GetModifiableOptimizer() );
if( !affineOptimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
#ifdef NDEBUG
affineOptimizer->SetNumberOfIterations( atoi( argv[6] ) );
#else
affineOptimizer->SetNumberOfIterations( 1 );
#endif
affineOptimizer->SetDoEstimateLearningRateOnce( false ); //true by default
affineOptimizer->SetDoEstimateLearningRateAtEachIteration( true );
affineOptimizer->SetScalesEstimator( scalesEstimator1 );
typedef CommandIterationUpdate<AffineRegistrationType> AffineCommandType;
typename AffineCommandType::Pointer affineObserver = AffineCommandType::New();
affineSimple->AddObserver( itk::MultiResolutionIterationEvent(), affineObserver );
{
typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType> ImageMetricType;
typename ImageMetricType::Pointer imageMetric = dynamic_cast<ImageMetricType*>( affineSimple->GetModifiableMetric() );
//imageMetric->SetUseFloatingPointCorrection(true);
imageMetric->SetFloatingPointCorrectionResolution(1e4);
}
//
// Now do the displacement field transform with gaussian smoothing using
// the composite transform.
//
typedef typename AffineRegistrationType::RealType RealType;
typedef itk::Vector<RealType, VImageDimension> VectorType;
VectorType zeroVector( 0.0 );
typedef itk::Image<VectorType, VImageDimension> DisplacementFieldType;
typename DisplacementFieldType::Pointer displacementField = DisplacementFieldType::New();
displacementField->CopyInformation( fixedImage );
displacementField->SetRegions( fixedImage->GetBufferedRegion() );
displacementField->Allocate();
displacementField->FillBuffer( zeroVector );
typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransform<RealType, VImageDimension> DisplacementFieldTransformType;
typename DisplacementFieldTransformType::Pointer fieldTransform = DisplacementFieldTransformType::New();
fieldTransform->SetGaussianSmoothingVarianceForTheUpdateField( 0 );
fieldTransform->SetGaussianSmoothingVarianceForTheTotalField( 1.5 );
fieldTransform->SetDisplacementField( displacementField );
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType> DisplacementFieldRegistrationType;
typename DisplacementFieldRegistrationType::Pointer displacementFieldSimple = DisplacementFieldRegistrationType::New();
displacementFieldSimple->SetObjectName("displacementFieldSimple");
typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, MovingImageType> CorrelationMetricType;
typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
typename CorrelationMetricType::RadiusType radius;
radius.Fill( 4 );
correlationMetric->SetRadius( radius );
correlationMetric->SetUseMovingImageGradientFilter( false );
correlationMetric->SetUseFixedImageGradientFilter( false );
//correlationMetric->SetUseFloatingPointCorrection(true);
//correlationMetric->SetFloatingPointCorrectionResolution(1e4);
typedef itk::RegistrationParameterScalesFromPhysicalShift<CorrelationMetricType> ScalesEstimatorType;
typename ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric( correlationMetric );
scalesEstimator->SetTransformForward( true );
typename GradientDescentOptimizerv4Type::Pointer optimizer = GradientDescentOptimizerv4Type::New();
optimizer->SetLearningRate( 1.0 );
#ifdef NDEBUG
optimizer->SetNumberOfIterations( atoi( argv[7] ) );
#else
optimizer->SetNumberOfIterations( 1 );
#endif
optimizer->SetScalesEstimator( scalesEstimator );
optimizer->SetDoEstimateLearningRateOnce( false ); //true by default
optimizer->SetDoEstimateLearningRateAtEachIteration( true );
displacementFieldSimple->SetFixedImage( fixedImage );
displacementFieldSimple->SetMovingImage( movingImage );
displacementFieldSimple->SetNumberOfLevels( 3 );
displacementFieldSimple->SetMovingInitialTransformInput( affineSimple->GetTransformOutput() );
displacementFieldSimple->SetMetric( correlationMetric );
displacementFieldSimple->SetOptimizer( optimizer );
displacementFieldSimple->SetInitialTransform( fieldTransform );
displacementFieldSimple->InPlaceOn();
typename DisplacementFieldRegistrationType::OptimizerWeightsType optimizerWeights;
optimizerWeights.SetSize( VImageDimension );
optimizerWeights.Fill( 0.995 );
displacementFieldSimple->SetOptimizerWeights( optimizerWeights );
// Shrink the virtual domain by specified factors for each level. See documentation
// for the itkShrinkImageFilter for more detailed behavior.
typename DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 3 );
shrinkFactorsPerLevel[0] = 3;
shrinkFactorsPerLevel[1] = 2;
shrinkFactorsPerLevel[2] = 1;
displacementFieldSimple->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
// Smooth by specified gaussian sigmas for each level. These values are specified in
// physical units.
typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 1;
displacementFieldSimple->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
typedef itk::GaussianSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<DisplacementFieldTransformType> DisplacementFieldTransformAdaptorType;
typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;
for( unsigned int level = 0; level < shrinkFactorsPerLevel.Size(); level++ )
{
// We use the shrink image filter to calculate the fixed parameters of the virtual
// domain at each level. To speed up calculation and avoid unnecessary memory
// usage, we could calculate these fixed parameters directly.
typedef itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType> ShrinkFilterType;
typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors( shrinkFactorsPerLevel[level] );
shrinkFilter->SetInput( displacementField );
shrinkFilter->Update();
typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New();
fieldTransformAdaptor->SetRequiredSpacing( shrinkFilter->GetOutput()->GetSpacing() );
fieldTransformAdaptor->SetRequiredSize( shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() );
fieldTransformAdaptor->SetRequiredDirection( shrinkFilter->GetOutput()->GetDirection() );
fieldTransformAdaptor->SetRequiredOrigin( shrinkFilter->GetOutput()->GetOrigin() );
adaptors.push_back( fieldTransformAdaptor.GetPointer() );
}
displacementFieldSimple->SetTransformParametersAdaptorsPerLevel( adaptors );
typedef CommandIterationUpdate<DisplacementFieldRegistrationType> DisplacementFieldRegistrationCommandType;
typename DisplacementFieldRegistrationCommandType::Pointer displacementFieldObserver = DisplacementFieldRegistrationCommandType::New();
displacementFieldSimple->AddObserver( itk::IterationEvent(), displacementFieldObserver );
try
{
std::cout << "Displ. txf - gauss update" << std::endl;
displacementFieldSimple->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType> ImageMetricType;
typename ImageMetricType::ConstPointer imageMetric = dynamic_cast<const ImageMetricType*>( affineSimple->GetMetric());
std::cout << " Affine parameters after registration: " << std::endl
<< affineOptimizer->GetCurrentPosition() << std::endl
<< " Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl
<< " Use FltPtCorrex: " << imageMetric->GetUseFloatingPointCorrection() << std::endl
<< " FltPtCorrexRes: " << imageMetric->GetFloatingPointCorrectionResolution() << std::endl
<< " Number of threads used:" << std::endl
<< " metric: " << imageMetric->GetNumberOfThreadsUsed() << std::endl
<< " optimizer: " << affineOptimizer->GetNumberOfThreads() << std::endl;
std::cout << "After displacement registration: " << std::endl
<< "Last LearningRate: " << optimizer->GetLearningRate() << std::endl
<< "Use FltPtCorrex: " << correlationMetric->GetUseFloatingPointCorrection() << std::endl
<< "FltPtCorrexRes: " << correlationMetric->GetFloatingPointCorrectionResolution() << std::endl
<< "Number of threads used:" << std::endl
<< " metric: " << correlationMetric->GetNumberOfThreadsUsed()
<< " optimizer: " << displacementFieldSimple->GetOptimizer()->GetNumberOfThreads() << std::endl;
typedef itk::CompositeTransform<RealType, VImageDimension> CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform = CompositeTransformType::New();
compositeTransform->AddTransform( affineSimple->GetModifiableTransform() );
compositeTransform->AddTransform( displacementFieldSimple->GetModifiableTransform() );
typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> ResampleFilterType;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( compositeTransform );
resampler->SetInput( movingImage );
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 0 );
resampler->Update();
typedef itk::ImageFileWriter<FixedImageType> WriterType;
typename WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[5] );
writer->SetInput( resampler->GetOutput() );
writer->Update();
return EXIT_SUCCESS;
}
int itkSimpleImageRegistrationTestWithMaskAndSampling( int argc, char *argv[] )
{
if( argc < 7 )
{
std::cout << argv[0] << " pixelType imageDimension fixedImage movingImage outputImage numberOfAffineIterations numberOfDeformableIterations" << std::endl;
exit( 1 );
}
switch( atoi( argv[2] ) )
{
case 2:
if( strcmp( argv[1], "float") == 0 )
{
return PerformSimpleImageRegistrationWithMaskAndSampling<2,float>( argc, argv );
}
else
{
return PerformSimpleImageRegistrationWithMaskAndSampling<2,double>( argc, argv );
}
case 3:
if( strcmp( argv[1], "float") == 0 )
{
return PerformSimpleImageRegistrationWithMaskAndSampling<3,float>( argc, argv );
}
else
{
return PerformSimpleImageRegistrationWithMaskAndSampling<3,double>( argc, argv );
}
default:
std::cerr << "Unsupported dimension" << std::endl;
exit( EXIT_FAILURE );
}
return EXIT_SUCCESS;
}
|