1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageRegistrationMethodv4.h"
#include "itkAffineTransform.h"
#include "itkEuclideanDistancePointSetToPointSetMetricv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
if(object == ITK_NULLPTR)
{
itkExceptionMacro(<< "Command update on null object");
}
std::cout << "Observing from class " << object->GetNameOfClass();
if (!object->GetObjectName().empty())
{
std::cout << " \"" << object->GetObjectName() << "\"";
}
std::cout << std::endl;
const TFilter * filter = static_cast< const TFilter * >( object );
if( typeid( event ) != typeid( itk::MultiResolutionIterationEvent ) || object == ITK_NULLPTR )
{ return; }
unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();
const itk::ObjectToObjectOptimizerBase* optimizerBase = filter->GetOptimizer();
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
typename GradientDescentOptimizerv4Type::ConstPointer optimizer = dynamic_cast<const GradientDescentOptimizerv4Type *>(optimizerBase);
if( !optimizer )
{
itkGenericExceptionMacro( "Error dynamic_cast failed" );
}
typename GradientDescentOptimizerv4Type::DerivativeType gradient = optimizer->GetGradient();
std::cout << " CL Current level: " << currentLevel << std::endl;
if (adaptors[currentLevel])
{
std::cout << " RFP Required fixed params: " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
}
std::cout << " LR Final learning rate: " << optimizer->GetLearningRate() << std::endl;
std::cout << " FM Final metric value: " << optimizer->GetCurrentMetricValue() << std::endl;
std::cout << " SC Optimizer scales: " << optimizer->GetScales() << std::endl;
std::cout << " FG Final metric gradient (sample of values): ";
if( gradient.GetSize() < 10 )
{
std::cout << gradient;
}
else
{
for( itk::SizeValueType i = 0; i < gradient.GetSize(); i += (gradient.GetSize() / 16) )
{
std::cout << gradient[i] << " ";
}
}
std::cout << std::endl;
}
};
int itkSimplePointSetRegistrationTest( int itkNotUsed( argc ), char * itkNotUsed( argv )[] )
{
const unsigned int Dimension = 2;
const unsigned int numberOfIterations = 20;
typedef itk::PointSet<unsigned int, Dimension> PointSetType;
typedef itk::EuclideanDistancePointSetToPointSetMetricv4<PointSetType> PointSetMetricType;
PointSetMetricType::Pointer metric = PointSetMetricType::New();
typedef PointSetMetricType::FixedPointSetType PointSetType;
typedef PointSetType::PointType PointType;
typedef double PixelType;
typedef itk::Image<PixelType, Dimension> FixedImageType;
typedef itk::Image<PixelType, Dimension> MovingImageType;
PointSetType::Pointer fixedPoints = PointSetType::New();
fixedPoints->Initialize();
PointSetType::Pointer movingPoints = PointSetType::New();
movingPoints->Initialize();
// two circles with a small offset
PointType offset;
for( unsigned int d=0; d < PointSetType::PointDimension; d++ )
{
offset[d] = 2.0;
}
unsigned long count = 0;
for( float theta = 0; theta < 2.0 * itk::Math::pi; theta += 0.1 )
{
unsigned int label = static_cast<unsigned int>( 1.5 + count / 100 );
PointType fixedPoint;
float radius = 100.0;
fixedPoint[0] = radius * std::cos( theta );
fixedPoint[1] = radius * std::sin( theta );
if( PointSetType::PointDimension > 2 )
{
fixedPoint[2] = radius * std::sin( theta );
}
fixedPoints->SetPoint( count, fixedPoint );
fixedPoints->SetPointData( count, label );
PointType movingPoint;
movingPoint[0] = fixedPoint[0] + offset[0];
movingPoint[1] = fixedPoint[1] + offset[1];
if( PointSetType::PointDimension > 2 )
{
movingPoint[2] = fixedPoint[2] + offset[2];
}
movingPoints->SetPoint( count, movingPoint );
movingPoints->SetPointData( count, label );
count++;
}
// virtual image domain is [-110,-110] [110,110]
FixedImageType::SizeType fixedImageSize;
FixedImageType::PointType fixedImageOrigin;
FixedImageType::DirectionType fixedImageDirection;
FixedImageType::SpacingType fixedImageSpacing;
fixedImageSize.Fill( 221 );
fixedImageOrigin.Fill( -110 );
fixedImageDirection.SetIdentity();
fixedImageSpacing.Fill( 1 );
FixedImageType::Pointer fixedImage = FixedImageType::New();
fixedImage->SetRegions( fixedImageSize );
fixedImage->SetOrigin( fixedImageOrigin );
fixedImage->SetDirection( fixedImageDirection );
fixedImage->SetSpacing( fixedImageSpacing );
fixedImage->Allocate();
typedef itk::AffineTransform<double, PointSetType::PointDimension> AffineTransformType;
AffineTransformType::Pointer transform = AffineTransformType::New();
transform->SetIdentity();
metric->SetFixedPointSet( fixedPoints );
metric->SetMovingPointSet( movingPoints );
metric->SetVirtualDomainFromImage( fixedImage );
metric->SetMovingTransform( transform );
metric->Initialize();
// scales estimator
typedef itk::RegistrationParameterScalesFromPhysicalShift< PointSetMetricType > RegistrationParameterScalesFromShiftType;
RegistrationParameterScalesFromShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromShiftType::New();
shiftScaleEstimator->SetMetric( metric );
shiftScaleEstimator->SetTransformForward( true );
// needed with pointset metrics
shiftScaleEstimator->SetVirtualDomainPointSet( metric->GetVirtualTransformedPointSet() );
// optimizer
typedef itk::GradientDescentOptimizerv4 OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetMetric( metric );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetScalesEstimator( shiftScaleEstimator );
optimizer->SetMaximumStepSizeInPhysicalUnits( 0.1 );
optimizer->SetMinimumConvergenceValue( 0.0 );
optimizer->SetConvergenceWindowSize( 10 );
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType> AffineRegistrationType;
AffineRegistrationType::Pointer affineSimple = AffineRegistrationType::New();
affineSimple->SetObjectName( "affineSimple" );
affineSimple->SetFixedPointSet( fixedPoints );
affineSimple->SetMovingPointSet( movingPoints );
affineSimple->SetInitialTransform( transform );
affineSimple->SetMetric( metric );
affineSimple->SetOptimizer( optimizer );
typedef CommandIterationUpdate<AffineRegistrationType> AffineCommandType;
AffineCommandType::Pointer affineObserver = AffineCommandType::New();
affineSimple->AddObserver( itk::MultiResolutionIterationEvent(), affineObserver );
try
{
std::cout << "Point set affine registration update" << std::endl;
affineSimple->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
// applying the resultant transform to moving points and verify result
std::cout << "Fixed\tMoving\tMovingTransformed\tFixedTransformed\tDiff" << std::endl;
bool passed = true;
PointType::ValueType tolerance = 1e-2;
AffineTransformType::InverseTransformBasePointer affineInverseTransform = affineSimple->GetModifiableTransform()->GetInverseTransform();
for( unsigned int n=0; n < movingPoints->GetNumberOfPoints(); n++ )
{
// compare the points in virtual domain
PointType transformedMovingPoint = affineInverseTransform->TransformPoint( movingPoints->GetPoint( n ) );
PointType fixedPoint = fixedPoints->GetPoint( n );
PointType transformedFixedPoint = affineSimple->GetModifiableTransform()->TransformPoint( fixedPoints->GetPoint( n ) );
PointType difference;
difference[0] = transformedMovingPoint[0] - fixedPoint[0];
difference[1] = transformedMovingPoint[1] - fixedPoint[1];
std::cout << fixedPoints->GetPoint( n ) << "\t" << movingPoints->GetPoint( n )
<< "\t" << transformedMovingPoint << "\t" << transformedFixedPoint << "\t" << difference << std::endl;
if( fabs( difference[0] ) > tolerance || fabs( difference[1] ) > tolerance )
{
passed = false;
}
}
if( ! passed )
{
std::cerr << "Results do not match truth within tolerance." << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|