1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkSyNImageRegistrationMethod.h"
#include "itkAffineTransform.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkCompositeTransform.h"
#include "itkDisplacementFieldTransformParametersAdaptor.h"
#include "itkVector.h"
#include "itkTestingMacros.h"
template<typename TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
typedef typename TFilter::FixedImageType FixedImageType;
itkStaticConstMacro( ImageDimension, unsigned int, FixedImageType::ImageDimension ); /** ImageDimension constants */
typedef itk::ShrinkImageFilter<FixedImageType, FixedImageType> ShrinkFilterType;
typedef typename TFilter::OutputTransformType::ScalarType RealType;
typedef itk::DisplacementFieldTransform<RealType, ImageDimension> DisplacementFieldTransformType;
typedef typename DisplacementFieldTransformType::DisplacementFieldType DisplacementFieldType;
protected:
CommandIterationUpdate() {};
public:
virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
const TFilter * filter =
dynamic_cast< const TFilter * >( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{ return; }
unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors = filter->GetShrinkFactorsPerDimension( currentLevel );
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors = filter->GetTransformParametersAdaptorsPerLevel();
std::cout << " Current level = " << currentLevel << std::endl;
std::cout << " shrink factor = " << shrinkFactors << std::endl;
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
std::cout << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters() << std::endl;
/*
testing "itkGetConstObjectMacro" at each iteration
*/
typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors( shrinkFactors );
shrinkFilter->SetInput( filter->GetFixedImage() );
shrinkFilter->Update();
const typename FixedImageType::SizeType ImageSize = shrinkFilter->GetOutput()->GetBufferedRegion().GetSize();
const typename DisplacementFieldType::SizeType FixedDisplacementFieldSize =
filter->GetFixedToMiddleTransform()->GetDisplacementField()->GetBufferedRegion().GetSize();
const typename DisplacementFieldType::SizeType MovingDisplacementFieldSize =
filter->GetMovingToMiddleTransform()->GetDisplacementField()->GetBufferedRegion().GetSize();
if( ( FixedDisplacementFieldSize == ImageSize ) && ( MovingDisplacementFieldSize == ImageSize ) )
{
std::cout << " *Filter returns its internal transforms properly*" << std::endl;
}
else
{
itkExceptionMacro( "Internal transforms should be consistent with input image size at each iteration. "
<< "Image size = " << ImageSize << ". Fixed field size = " << FixedDisplacementFieldSize
<< ". Moving field size = " << MovingDisplacementFieldSize << "." );
}
}
};
template<unsigned int TDimension>
int PerformDisplacementFieldImageRegistration( int itkNotUsed( argc ), char *argv[] )
{
const unsigned int ImageDimension = TDimension;
typedef double PixelType;
typedef itk::Image<PixelType, ImageDimension> FixedImageType;
typedef itk::Image<PixelType, ImageDimension> MovingImageType;
typedef itk::ImageFileReader<FixedImageType> ImageReaderType;
typename ImageReaderType::Pointer fixedImageReader = ImageReaderType::New();
fixedImageReader->SetFileName( argv[2] );
fixedImageReader->Update();
typename FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
fixedImage->Update();
fixedImage->DisconnectPipeline();
typename ImageReaderType::Pointer movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[3] );
movingImageReader->Update();
typename MovingImageType::Pointer movingImage = movingImageReader->GetOutput();
movingImage->Update();
movingImage->DisconnectPipeline();
typedef itk::AffineTransform<double, ImageDimension> AffineTransformType;
typedef itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType, AffineTransformType> AffineRegistrationType;
typename AffineRegistrationType::Pointer affineSimple = AffineRegistrationType::New();
affineSimple->SetFixedImage( fixedImage );
affineSimple->SetMovingImage( movingImage );
// Shrink the virtual domain by specified factors for each level. See documentation
// for the itkShrinkImageFilter for more detailed behavior.
typename AffineRegistrationType::ShrinkFactorsArrayType affineShrinkFactorsPerLevel;
affineShrinkFactorsPerLevel.SetSize( 3 );
affineShrinkFactorsPerLevel[0] = 4;
affineShrinkFactorsPerLevel[1] = 4;
affineShrinkFactorsPerLevel[2] = 4;
affineSimple->SetShrinkFactorsPerLevel( affineShrinkFactorsPerLevel );
// Set the number of iterations
typedef itk::GradientDescentOptimizerv4 GradientDescentOptimizerv4Type;
GradientDescentOptimizerv4Type * optimizer = dynamic_cast<GradientDescentOptimizerv4Type *>( affineSimple->GetModifiableOptimizer() );
TEST_EXPECT_TRUE( optimizer != ITK_NULLPTR );
#ifdef NDEBUG
optimizer->SetNumberOfIterations( 100 );
#else
optimizer->SetNumberOfIterations( 1 );
#endif
try
{
std::cout << "Affine transform" << std::endl;
affineSimple->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
//
// Now do the displacement field transform with gaussian smoothing using
// the composite transform.
//
typedef typename AffineRegistrationType::RealType RealType;
typedef itk::CompositeTransform<RealType, ImageDimension> CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform = CompositeTransformType::New();
compositeTransform->AddTransform( affineSimple->GetModifiableTransform() );
typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> AffineResampleFilterType;
typename AffineResampleFilterType::Pointer affineResampler = AffineResampleFilterType::New();
affineResampler->SetTransform( compositeTransform );
affineResampler->SetInput( movingImage );
affineResampler->SetSize( fixedImage->GetBufferedRegion().GetSize() );
affineResampler->SetOutputOrigin( fixedImage->GetOrigin() );
affineResampler->SetOutputSpacing( fixedImage->GetSpacing() );
affineResampler->SetOutputDirection( fixedImage->GetDirection() );
affineResampler->SetDefaultPixelValue( 0 );
affineResampler->Update();
std::string affineMovingImageFileName = std::string( argv[4] ) + std::string( "MovingImageAfterAffineTransform.nii.gz" );
typedef itk::ImageFileWriter<FixedImageType> AffineWriterType;
typename AffineWriterType::Pointer affineWriter = AffineWriterType::New();
affineWriter->SetFileName( affineMovingImageFileName.c_str() );
affineWriter->SetInput( affineResampler->GetOutput() );
affineWriter->Update();
typedef itk::Vector<RealType, ImageDimension> VectorType;
VectorType zeroVector( 0.0 );
// Create the SyN deformable registration method
typedef itk::Image<VectorType, ImageDimension> DisplacementFieldType;
typename DisplacementFieldType::Pointer displacementField = DisplacementFieldType::New();
displacementField->CopyInformation( fixedImage );
displacementField->SetRegions( fixedImage->GetBufferedRegion() );
displacementField->Allocate();
displacementField->FillBuffer( zeroVector );
typename DisplacementFieldType::Pointer inverseDisplacementField = DisplacementFieldType::New();
inverseDisplacementField->CopyInformation( fixedImage );
inverseDisplacementField->SetRegions( fixedImage->GetBufferedRegion() );
inverseDisplacementField->Allocate();
inverseDisplacementField->FillBuffer( zeroVector );
typedef itk::SyNImageRegistrationMethod<FixedImageType, MovingImageType> DisplacementFieldRegistrationType;
typename DisplacementFieldRegistrationType::Pointer displacementFieldRegistration = DisplacementFieldRegistrationType::New();
typedef typename DisplacementFieldRegistrationType::OutputTransformType OutputTransformType;
typename OutputTransformType::Pointer outputTransform = OutputTransformType::New();
outputTransform->SetDisplacementField( displacementField );
outputTransform->SetInverseDisplacementField( inverseDisplacementField );
displacementFieldRegistration->SetInitialTransform( outputTransform );
displacementFieldRegistration->InPlaceOn();
//Test member functions
displacementFieldRegistration->SetDownsampleImagesForMetricDerivatives(false);
if( displacementFieldRegistration->GetDownsampleImagesForMetricDerivatives() != false )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetDownsampleImagesForMetricDerivatives(true);
if( displacementFieldRegistration->GetDownsampleImagesForMetricDerivatives() != true )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetAverageMidPointGradients(false);
if( displacementFieldRegistration->GetAverageMidPointGradients() != false )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetAverageMidPointGradients(true);
if( displacementFieldRegistration->GetAverageMidPointGradients() != true )
{
return EXIT_FAILURE;
}
// Create the transform adaptors
typedef itk::DisplacementFieldTransformParametersAdaptor<OutputTransformType> DisplacementFieldTransformAdaptorType;
typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;
// Create the transform adaptors
// For the gaussian displacement field, the specified variances are in image spacing terms
// and, in normal practice, we typically don't change these values at each level. However,
// if the user wishes to add that option, they can use the class
// GaussianSmoothingOnUpdateDisplacementFieldTransformAdaptor
unsigned int numberOfLevels = 3;
typename DisplacementFieldRegistrationType::NumberOfIterationsArrayType numberOfIterationsPerLevel;
numberOfIterationsPerLevel.SetSize( 3 );
#ifdef NDEBUG
numberOfIterationsPerLevel[0] = atoi( argv[5] );
numberOfIterationsPerLevel[1] = 2;
numberOfIterationsPerLevel[2] = 1;
#else
numberOfIterationsPerLevel[0] = 1;
numberOfIterationsPerLevel[1] = 1;
numberOfIterationsPerLevel[2] = 1;
#endif
RealType varianceForUpdateField = 1.75;
RealType varianceForTotalField = 0.5;
typename DisplacementFieldRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 3 );
shrinkFactorsPerLevel[0] = 3;
shrinkFactorsPerLevel[1] = 2;
shrinkFactorsPerLevel[2] = 1;
typename DisplacementFieldRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 0;
for( unsigned int level = 0; level < numberOfLevels; level++ )
{
// We use the shrink image filter to calculate the fixed parameters of the virtual
// domain at each level. To speed up calculation and avoid unnecessary memory
// usage, we could calculate these fixed parameters directly.
typedef itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType> ShrinkFilterType;
typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors( shrinkFactorsPerLevel[level] );
shrinkFilter->SetInput( displacementField );
shrinkFilter->Update();
typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor = DisplacementFieldTransformAdaptorType::New();
fieldTransformAdaptor->SetRequiredSpacing( shrinkFilter->GetOutput()->GetSpacing() );
fieldTransformAdaptor->SetRequiredSize( shrinkFilter->GetOutput()->GetBufferedRegion().GetSize() );
fieldTransformAdaptor->SetRequiredDirection( shrinkFilter->GetOutput()->GetDirection() );
fieldTransformAdaptor->SetRequiredOrigin( shrinkFilter->GetOutput()->GetOrigin() );
fieldTransformAdaptor->SetTransform( outputTransform );
adaptors.push_back( fieldTransformAdaptor.GetPointer() );
}
typedef itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, MovingImageType> CorrelationMetricType;
typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
typename CorrelationMetricType::RadiusType radius;
radius.Fill( 4 );
correlationMetric->SetRadius( radius );
correlationMetric->SetUseMovingImageGradientFilter( false );
correlationMetric->SetUseFixedImageGradientFilter( false );
displacementFieldRegistration->SetFixedImage( fixedImage );
displacementFieldRegistration->SetMovingImage( movingImage );
displacementFieldRegistration->SetNumberOfLevels( 3 );
displacementFieldRegistration->SetMovingInitialTransform( compositeTransform );
displacementFieldRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
displacementFieldRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
displacementFieldRegistration->SetMetric( correlationMetric );
const typename DisplacementFieldRegistrationType::RealType local_epsilon = itk::NumericTraits< typename DisplacementFieldRegistrationType::RealType >::epsilon();
const typename DisplacementFieldRegistrationType::RealType local_LearningRate = atof( argv[6] );
displacementFieldRegistration->SetLearningRate( local_LearningRate );
if ( displacementFieldRegistration->GetLearningRate() - local_LearningRate > local_epsilon )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetNumberOfIterationsPerLevel( numberOfIterationsPerLevel );
if ( displacementFieldRegistration->GetNumberOfIterationsPerLevel() != numberOfIterationsPerLevel )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel( adaptors );
displacementFieldRegistration->SetGaussianSmoothingVarianceForTheUpdateField( varianceForUpdateField );
if ( displacementFieldRegistration->GetGaussianSmoothingVarianceForTheUpdateField() - varianceForUpdateField > local_epsilon )
{
return EXIT_FAILURE;
}
displacementFieldRegistration->SetGaussianSmoothingVarianceForTheTotalField( varianceForTotalField );
if ( displacementFieldRegistration->GetGaussianSmoothingVarianceForTheTotalField() - varianceForTotalField > local_epsilon )
{
return EXIT_FAILURE;
}
const typename DisplacementFieldRegistrationType::RealType local_ConvergenceThreshold = 1.0e-6;
displacementFieldRegistration->SetConvergenceThreshold( local_ConvergenceThreshold );
if ( displacementFieldRegistration->GetConvergenceThreshold() - local_ConvergenceThreshold > local_epsilon )
{
return EXIT_FAILURE;
}
const unsigned int local_ConvergenceWindowSize = 10;
displacementFieldRegistration->SetConvergenceWindowSize( local_ConvergenceWindowSize );
if ( displacementFieldRegistration->GetConvergenceWindowSize() != local_ConvergenceWindowSize )
{
return EXIT_FAILURE;
}
typedef CommandIterationUpdate<DisplacementFieldRegistrationType> DisplacementFieldCommandType;
typename DisplacementFieldCommandType::Pointer DisplacementFieldObserver = DisplacementFieldCommandType::New();
displacementFieldRegistration->AddObserver( itk::IterationEvent(), DisplacementFieldObserver );
try
{
std::cout << "SyN registration" << std::endl;
displacementFieldRegistration->Update();
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform( outputTransform );
typedef itk::ResampleImageFilter<MovingImageType, FixedImageType> ResampleFilterType;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( compositeTransform );
resampler->SetInput( movingImage );
resampler->SetSize( fixedImage->GetBufferedRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 0 );
resampler->Update();
std::string warpedMovingImageFileName = std::string( argv[4] ) + std::string( "MovingImageAfterSyN.nii.gz" );
typedef itk::ImageFileWriter<FixedImageType> WriterType;
typename WriterType::Pointer writer = WriterType::New();
writer->SetFileName( warpedMovingImageFileName.c_str() );
writer->SetInput( resampler->GetOutput() );
writer->Update();
typedef itk::ResampleImageFilter<FixedImageType, MovingImageType> InverseResampleFilterType;
typename InverseResampleFilterType::Pointer inverseResampler = ResampleFilterType::New();
inverseResampler->SetTransform( compositeTransform->GetInverseTransform() );
inverseResampler->SetInput( fixedImage );
inverseResampler->SetSize( movingImage->GetBufferedRegion().GetSize() );
inverseResampler->SetOutputOrigin( movingImage->GetOrigin() );
inverseResampler->SetOutputSpacing( movingImage->GetSpacing() );
inverseResampler->SetOutputDirection( movingImage->GetDirection() );
inverseResampler->SetDefaultPixelValue( 0 );
inverseResampler->Update();
std::string inverseWarpedFixedImageFileName = std::string( argv[4] ) + std::string( "InverseWarpedFixedImage.nii.gz" );
typedef itk::ImageFileWriter<MovingImageType> InverseWriterType;
typename InverseWriterType::Pointer inverseWriter = InverseWriterType::New();
inverseWriter->SetFileName( inverseWarpedFixedImageFileName.c_str() );
inverseWriter->SetInput( inverseResampler->GetOutput() );
inverseWriter->Update();
std::string displacementFieldFileName = std::string( argv[4] ) + std::string( "DisplacementField.nii.gz" );
typedef itk::ImageFileWriter<DisplacementFieldType> DisplacementFieldWriterType;
typename DisplacementFieldWriterType::Pointer displacementFieldWriter = DisplacementFieldWriterType::New();
displacementFieldWriter->SetFileName( displacementFieldFileName.c_str() );
displacementFieldWriter->SetInput( outputTransform->GetDisplacementField() );
displacementFieldWriter->Update();
return EXIT_SUCCESS;
}
int itkSyNImageRegistrationTest( int argc, char *argv[] )
{
if ( argc < 5 )
{
std::cout << argv[0] << " imageDimension fixedImage movingImage outputPrefix numberOfDeformableIterations learningRate" << std::endl;
exit( 1 );
}
switch( atoi( argv[1] ) )
{
case 2:
PerformDisplacementFieldImageRegistration<2>( argc, argv );
break;
case 3:
PerformDisplacementFieldImageRegistration<3>( argc, argv );
break;
default:
std::cerr << "Unsupported dimension" << std::endl;
exit( EXIT_FAILURE );
}
return EXIT_SUCCESS;
}
|