1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageKmeansImageFilter_h
#define itkScalarImageKmeansImageFilter_h
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkSampleClassifierFilter.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkMinimumDecisionRule.h"
#include "itkRegionOfInterestImageFilter.h"
#include <vector>
namespace itk
{
/** \class ScalarImageKmeansImageFilter
* \brief Classifies the intensity values of a scalar image using the K-Means algorithm.
*
* Given an input image with scalar values, it uses the K-Means statistical
* classifier in order to define labels for every pixel in the image. The
* filter is templated over the type of the input image. The output image is
* predefined as having the same dimension of the input image and pixel type
* unsigned char, under the assumption that the classifier will generate less
* than 256 classes.
*
* You may want to look also at the RelabelImageFilter that may be used as a
* postprocessing stage, in particular if you are interested in ordering the
* labels by their relative size in number of pixels.
*
* \sa Image
* \sa ImageKmeansModelEstimator
* \sa KdTreeBasedKmeansEstimator, WeightedCentroidKdTreeGenerator, KdTree
* \sa RelabelImageFilter
*
* \ingroup ClassificationFilters
* \ingroup ITKClassifiers
*
* \wiki
* \wikiexample{Statistics/ScalarImageKmeansImageFilter,Cluster the pixels in a greyscale image}
* \endwiki
*/
template< typename TInputImage,
typename TOutputImage = Image< unsigned char, TInputImage::ImageDimension > >
class ITK_TEMPLATE_EXPORT ScalarImageKmeansImageFilter:
public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
/** Extract dimension from input and output image. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
/** Convenient typedefs for simplifying declarations. */
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
/** Standard class typedefs. */
typedef ScalarImageKmeansImageFilter Self;
typedef ImageToImageFilter< InputImageType, OutputImageType > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ScalarImageKmeansImageFilter, ImageToImageFilter);
/** Image typedef support. */
typedef typename InputImageType::PixelType InputPixelType;
typedef typename OutputImageType::PixelType OutputPixelType;
/** Type used for representing the Mean values. */
typedef typename NumericTraits< InputPixelType >::RealType RealPixelType;
/** Create a List from the scalar image. */
typedef itk::Statistics::ImageToListSampleAdaptor< InputImageType > AdaptorType;
/** Define the Measurement vector type from the AdaptorType. */
typedef typename AdaptorType::MeasurementVectorType MeasurementVectorType;
typedef itk::Statistics::DistanceToCentroidMembershipFunction< MeasurementVectorType > MembershipFunctionType;
typedef itk::Statistics::SampleClassifierFilter< AdaptorType > ClassifierType;
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
typedef typename ClassifierType::ClassLabelVectorType ClassLabelVectorType;
typedef typename ClassifierType::MembershipFunctionVectorType MembershipFunctionVectorType;
typedef typename MembershipFunctionType::CentroidType MembershipFunctionOriginType;
typedef typename MembershipFunctionType::Pointer MembershipFunctionPointer;
/** Create the K-d tree structure. */
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< AdaptorType > TreeGeneratorType;
typedef typename TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType > EstimatorType;
typedef typename EstimatorType::ParametersType ParametersType;
typedef typename InputImageType::RegionType ImageRegionType;
typedef RegionOfInterestImageFilter<
InputImageType,
InputImageType > RegionOfInterestFilterType;
/** Add a new class to the classification by specifying its initial mean. */
void AddClassWithInitialMean(RealPixelType mean);
/** Return the array of Means found after the classification. */
itkGetConstReferenceMacro(FinalMeans, ParametersType);
/** Set/Get the UseNonContiguousLabels flag. When this is set to false the
* labels are numbered contiguously, like in {0,1,3..N}. When the flag is set
* to true, the labels are selected in order to span the dynamic range of the
* output image. This last option is useful when the output image is intended
* only for display. The default value is false. */
itkSetMacro(UseNonContiguousLabels, bool);
itkGetConstReferenceMacro(UseNonContiguousLabels, bool);
itkBooleanMacro(UseNonContiguousLabels);
/** Set Region method to constrain classfication to a certain region */
void SetImageRegion(const ImageRegionType & region);
/** Get the region over which the statistics will be computed */
itkGetConstReferenceMacro(ImageRegion, ImageRegionType);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( InputHasNumericTraitsCheck,
( Concept::HasNumericTraits< InputPixelType > ) );
// End concept checking
#endif
protected:
ScalarImageKmeansImageFilter();
virtual ~ScalarImageKmeansImageFilter() ITK_OVERRIDE {}
void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** This method runs the statistical methods that identify the means of the
* classes and the use the distances to those means in order to label the
* image pixels.
* \sa ImageToImageFilter::GenerateData()
*/
void GenerateData() ITK_OVERRIDE;
/* See superclass for doxygen. This methods additionally checks that
* the number of means is not 0. */
virtual void VerifyPreconditions() ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(ScalarImageKmeansImageFilter);
typedef std::vector< RealPixelType > MeansContainer;
MeansContainer m_InitialMeans;
ParametersType m_FinalMeans;
bool m_UseNonContiguousLabels;
ImageRegionType m_ImageRegion;
bool m_ImageRegionDefined;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageKmeansImageFilter.hxx"
#endif
#endif
|