File: itkScalarImageKmeansImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 7,332 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkScalarImageKmeansImageFilter_h
#define itkScalarImageKmeansImageFilter_h


#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"

#include "itkSampleClassifierFilter.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkMinimumDecisionRule.h"

#include "itkRegionOfInterestImageFilter.h"

#include <vector>

namespace itk
{
/** \class ScalarImageKmeansImageFilter
 * \brief Classifies the intensity values of a scalar image using the K-Means algorithm.
 *
 * Given an input image with scalar values, it uses the K-Means statistical
 * classifier in order to define labels for every pixel in the image. The
 * filter is templated over the type of the input image. The output image is
 * predefined as having the same dimension of the input image and pixel type
 * unsigned char, under the assumption that the classifier will generate less
 * than 256 classes.
 *
 * You may want to look also at the RelabelImageFilter that may be used as a
 * postprocessing stage, in particular if you are interested in ordering the
 * labels by their relative size in number of pixels.
 *
 * \sa Image
 * \sa ImageKmeansModelEstimator
 * \sa KdTreeBasedKmeansEstimator, WeightedCentroidKdTreeGenerator, KdTree
 * \sa RelabelImageFilter
 *
 * \ingroup ClassificationFilters
 * \ingroup ITKClassifiers
 *
 * \wiki
 * \wikiexample{Statistics/ScalarImageKmeansImageFilter,Cluster the pixels in a greyscale image}
 * \endwiki
 */
template< typename TInputImage,
          typename TOutputImage = Image< unsigned char, TInputImage::ImageDimension > >
class ITK_TEMPLATE_EXPORT ScalarImageKmeansImageFilter:
  public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
  /** Extract dimension from input and output image. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);

  /** Convenient typedefs for simplifying declarations. */
  typedef TInputImage  InputImageType;
  typedef TOutputImage OutputImageType;

  /** Standard class typedefs. */
  typedef ScalarImageKmeansImageFilter                          Self;
  typedef ImageToImageFilter< InputImageType, OutputImageType > Superclass;
  typedef SmartPointer< Self >                                  Pointer;
  typedef SmartPointer< const Self >                            ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(ScalarImageKmeansImageFilter, ImageToImageFilter);

  /** Image typedef support. */
  typedef typename InputImageType::PixelType  InputPixelType;
  typedef typename OutputImageType::PixelType OutputPixelType;

  /** Type used for representing the Mean values. */
  typedef typename NumericTraits< InputPixelType >::RealType RealPixelType;

  /** Create a List from the scalar image. */
  typedef itk::Statistics::ImageToListSampleAdaptor< InputImageType > AdaptorType;

  /** Define the Measurement vector type from the AdaptorType. */
  typedef typename AdaptorType::MeasurementVectorType MeasurementVectorType;

  typedef itk::Statistics::DistanceToCentroidMembershipFunction< MeasurementVectorType > MembershipFunctionType;
  typedef itk::Statistics::SampleClassifierFilter< AdaptorType >                         ClassifierType;
  typedef itk::Statistics::MinimumDecisionRule  DecisionRuleType;

  typedef typename ClassifierType::ClassLabelVectorType ClassLabelVectorType;

  typedef typename ClassifierType::MembershipFunctionVectorType MembershipFunctionVectorType;
  typedef typename MembershipFunctionType::CentroidType         MembershipFunctionOriginType;

  typedef typename MembershipFunctionType::Pointer MembershipFunctionPointer;

  /** Create the K-d tree structure. */
  typedef itk::Statistics::WeightedCentroidKdTreeGenerator< AdaptorType > TreeGeneratorType;
  typedef typename TreeGeneratorType::KdTreeType                          TreeType;
  typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType >         EstimatorType;

  typedef typename EstimatorType::ParametersType ParametersType;

  typedef typename InputImageType::RegionType ImageRegionType;

  typedef RegionOfInterestImageFilter<
    InputImageType,
    InputImageType  > RegionOfInterestFilterType;

  /** Add a new class to the classification by specifying its initial mean. */
  void AddClassWithInitialMean(RealPixelType mean);

  /** Return the array of Means found after the classification. */
  itkGetConstReferenceMacro(FinalMeans, ParametersType);

  /** Set/Get the UseNonContiguousLabels flag. When this is set to false the
   * labels are numbered contiguously, like in {0,1,3..N}. When the flag is set
   * to true, the labels are selected in order to span the dynamic range of the
   * output image. This last option is useful when the output image is intended
   * only for display. The default value is false. */
  itkSetMacro(UseNonContiguousLabels, bool);
  itkGetConstReferenceMacro(UseNonContiguousLabels, bool);
  itkBooleanMacro(UseNonContiguousLabels);

  /** Set Region method to constrain classfication to a certain region */
  void SetImageRegion(const ImageRegionType & region);

  /** Get the region over which the statistics will be computed */
  itkGetConstReferenceMacro(ImageRegion, ImageRegionType);

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro( InputHasNumericTraitsCheck,
                   ( Concept::HasNumericTraits< InputPixelType > ) );
  // End concept checking
#endif

protected:
  ScalarImageKmeansImageFilter();
  virtual ~ScalarImageKmeansImageFilter() ITK_OVERRIDE {}
  void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  /** This method runs the statistical methods that identify the means of the
   * classes and the use the distances to those means in order to label the
   * image pixels.
   * \sa ImageToImageFilter::GenerateData()
   */
  void GenerateData() ITK_OVERRIDE;

  /* See superclass for doxygen. This methods additionally checks that
   * the number of means is not 0. */
  virtual void VerifyPreconditions() ITK_OVERRIDE;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(ScalarImageKmeansImageFilter);

  typedef std::vector< RealPixelType > MeansContainer;

  MeansContainer m_InitialMeans;

  ParametersType m_FinalMeans;

  bool m_UseNonContiguousLabels;

  ImageRegionType m_ImageRegion;

  bool m_ImageRegionDefined;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageKmeansImageFilter.hxx"
#endif

#endif