1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageKmeansImageFilter_hxx
#define itkScalarImageKmeansImageFilter_hxx
#include "itkScalarImageKmeansImageFilter.h"
#include "itkImageRegionExclusionIteratorWithIndex.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkProgressReporter.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::ScalarImageKmeansImageFilter() :
m_UseNonContiguousLabels( false ),
m_ImageRegionDefined( false )
{
}
template< typename TInputImage, typename TOutputImage >
void ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::SetImageRegion(const ImageRegionType & region)
{
m_ImageRegion = region;
m_ImageRegionDefined = true;
}
template< typename TInputImage, typename TOutputImage >
void
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::VerifyPreconditions()
{
this->Superclass::VerifyPreconditions();
if ( this->m_InitialMeans.size() == 0 )
{
itkExceptionMacro("Atleast One InialMean is required.");
}
}
template< typename TInputImage, typename TOutputImage >
void
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
typename AdaptorType::Pointer adaptor = AdaptorType::New();
// Setup the regions here if a sub-region has been specified to restrict
// classification on. Since this is not ThreadedGenenerateData, we are
// safe...
if ( m_ImageRegionDefined )
{
typename RegionOfInterestFilterType::Pointer regionOfInterestFilter =
RegionOfInterestFilterType::New();
regionOfInterestFilter->SetRegionOfInterest(m_ImageRegion);
regionOfInterestFilter->SetInput( this->GetInput() );
regionOfInterestFilter->Update();
adaptor->SetImage( regionOfInterestFilter->GetOutput() );
}
else
{
adaptor->SetImage( this->GetInput() );
}
typename TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample(adaptor);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();
typename EstimatorType::Pointer estimator = EstimatorType::New();
const size_t numberOfClasses = this->m_InitialMeans.size();
ParametersType initialMeans(numberOfClasses);
for ( unsigned int cl = 0; cl < numberOfClasses; cl++ )
{
initialMeans[cl] = this->m_InitialMeans[cl];
}
estimator->SetParameters(initialMeans);
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold (0.0 );
estimator->StartOptimization();
this->m_FinalMeans = estimator->GetParameters();
typedef typename InputImageType::RegionType RegionType;
// Now classify the samples
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
typename ClassifierType::Pointer classifier = ClassifierType::New();
classifier->SetDecisionRule( decisionRule.GetPointer() );
classifier->SetInput( adaptor );
classifier->SetNumberOfClasses (numberOfClasses );
ClassLabelVectorType classLabels;
classLabels.resize( numberOfClasses );
// Spread the labels over the intensity range
unsigned int labelInterval = 1;
if ( m_UseNonContiguousLabels )
{
labelInterval = ( NumericTraits< OutputPixelType >::max() / numberOfClasses ) - 1;
}
unsigned int label = 0;
MembershipFunctionVectorType membershipFunctions;
for ( unsigned int k = 0; k < numberOfClasses; k++ )
{
classLabels[k] = label;
label += labelInterval;
MembershipFunctionPointer membershipFunction = MembershipFunctionType::New();
MembershipFunctionOriginType origin( adaptor->GetMeasurementVectorSize() );
origin[0] = this->m_FinalMeans[k]; // A scalar image has a MeasurementVector
// of dimension 1
membershipFunction->SetCentroid(origin);
const MembershipFunctionType *constMembershipFunction = membershipFunction;
membershipFunctions.push_back(constMembershipFunction);
}
typename ClassifierType::MembershipFunctionVectorObjectPointer membershipFunctionsObject =
ClassifierType::MembershipFunctionVectorObjectType::New();
membershipFunctionsObject->Set(membershipFunctions);
classifier->SetMembershipFunctions(membershipFunctionsObject);
typedef typename ClassifierType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
typename ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
classLabelsObject->Set( classLabels );
classifier->SetClassLabels( classLabelsObject );
// Execute the actual classification
classifier->Update();
// Now classify the pixels
typename OutputImageType::Pointer outputPtr = this->GetOutput();
typedef ImageRegionIterator< OutputImageType > ImageIterator;
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
RegionType region = outputPtr->GetBufferedRegion();
// If we constrained the classification to a region, label only pixels within
// the region. Label outside pixels as numberOfClasses + 1
if ( m_ImageRegionDefined )
{
region = m_ImageRegion;
}
ImageIterator pixel( outputPtr, region );
pixel.GoToBegin();
typedef typename ClassifierType::MembershipSampleType ClassifierOutputType;
const ClassifierOutputType *membershipSample = classifier->GetOutput();
typedef typename ClassifierOutputType::ConstIterator LabelIterator;
LabelIterator iter = membershipSample->Begin();
LabelIterator end = membershipSample->End();
while ( iter != end )
{
pixel.Set( iter.GetClassLabel() );
++iter;
++pixel;
}
if ( m_ImageRegionDefined )
{
// If a region is defined to constrain classification to, we need to label
// pixels outside with numberOfClasses + 1.
typedef ImageRegionExclusionIteratorWithIndex< OutputImageType >
ExclusionImageIteratorType;
ExclusionImageIteratorType exIt( outputPtr, outputPtr->GetBufferedRegion() );
exIt.SetExclusionRegion( region );
exIt.GoToBegin();
if ( m_UseNonContiguousLabels )
{
OutputPixelType outsideLabel = labelInterval * numberOfClasses;
while ( !exIt.IsAtEnd() )
{
exIt.Set(outsideLabel);
++exIt;
}
}
else
{
while ( !exIt.IsAtEnd() )
{
exIt.Set(numberOfClasses);
++exIt;
}
}
}
}
template< typename TInputImage, typename TOutputImage >
void
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::AddClassWithInitialMean(RealPixelType mean)
{
this->m_InitialMeans.push_back(mean);
}
template< typename TInputImage, typename TOutputImage >
void
ScalarImageKmeansImageFilter< TInputImage, TOutputImage >
::PrintSelf( std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Final Means " << m_FinalMeans << std::endl;
os << indent << "Use Contiguous Labels " << m_UseNonContiguousLabels << std::endl;
os << indent << "Image Region Defined: " << m_ImageRegionDefined << std::endl;
os << indent << "Image Region: " << m_ImageRegion << std::endl;
}
} // end namespace itk
#endif
|